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ABSTRACT
�is paper addresses two reliability-based security threats and mit-
igations for embedded systems namely, aging and thermal side
channels. Device aging can be used as a hardware a�ack vector by
using voltage scaling or specially cra�ed instruction sequences to
violate embedded processor guard bands. Short-term aging e�ects
can be utilized to cause transient degradation of the embedded
device without leaving any trace of the a�ack. (�ermal) side chan-
nels can be used as an a�ack vector and as a defense. Speci�cally,
thermal side channels are an e�ective and secure way to remotely
monitor code execution on an embedded processor and/or to pos-
sibly leak information. Although various algorithmic means to
detect anomaly are available, machine learning tools are e�ective
for anomaly detection. We will show such utilization of deep learn-
ing networks in conjunction with thermal side channels to detect
code injection/modi�cation representing anomaly.
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1 INTRODUCTION
Modern embedded systems (ES), industrial control systems (ICS),
and other cyber-physical systems (CPS) are becoming complex
interconnected systems of heterogeneous hardware and so�ware
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components such as sensors, actuators, controllers, physical sys-
tems/ processes that are controlled or monitored, computational
nodes, and communication interfaces and protocols. Increasing
network connectivity and remote programmability of embedded
devices in CPS is increasing the a�ack surface. At the same time,
these capabilities simplify deployment and maintenance of CPS
that are geographically spread. One can appreciate the potential
widespread and possibly long-lasting impact of a�acks on embed-
ded systems especially when an a�acker uses knowledge of the
process dynamics characteristics to cra� process-aware a�acks to
maximize process impact or to elude detection or both. �e com-
plexity and connectivity of embedded devices in CPS necessitates
robust cyber-security techniques [20, 21, 42, 45, 53]. �ere have
been several publicized a�acks on CPS over the past few years
[2, 3, 16, 18, 27, 47, 48, 50, 62, 69]. �e number of incidents that the
ICS Cyber Emergency Response Team (ICS-CERT) received and
responded to in the US has increased from 245 in 2014 to 295 in
2015 [2, 3].

While cyber-security for embedded systems is a broad research
area spanning hardware, �rmware, and so�ware, both in terms of
threats and mitigations, this paper addresses two speci�c directions.
First, the paper addresses the security impact of device aging - both
long-term aging and short-term aging. �e second direction consid-
ered in this paper is thermal side channels for remote monitoring
of an embedded system (or possibly creating leaks).

When a device is aged either by running speci�c instruction
sequences or by varying the device supply voltage or the clock, it
can create temporal violations of the device guard band. Aging is
relevant to embedded systems both as a threat and as a mitigation.
On one hand, aging degrades an embedded system impacting the
physical processes in the CPS. Malicious aging can be utilized to
launch a warranty a�ack (by a malicious consumer who wishes to
wear out a device to misuse the warranty) or planned obsolescence
(by a manufacturer who wishes to prematurely degrade a device
to force users to replace/upgrade the device). On the other hand,
aging can be used as a hardware-level signature of the system to
detect counterfeit/ damaged/ compromised embedded devices.

When an embedded device executes code, the underlying physi-
cal processes on the device result in analog emissions called side
channels. Side channel modalities include thermal, power, elec-
tromagnetic (EM), magnetic, and acoustic and re�ect, in general,
information about the characteristics of the code being executed
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with di�erent temporal scales and resolutions depending on the
side channel modalities. While side channels have been extensively
studied in the context of information leakage, i.e., remotely infer-
ring properties about code executing on a device with/without
assistance of a malicious code resident on the device, we consider
here the possibility of using side channels to remotely monitor
the device to continuously verify that the device is operating as
intended (e.g., to detect code modi�cations due to cyber-a�acks,
etc.). In particular, we consider the thermal side channel of an
embedded device and show that thermal images can be used to
remotely extract information on device activity pa�erns.

�is paper is organized as follows: Device and circuit aging
and its relevance to embedded systems security is addressed in
Section 2. Side channels of embedded devices are discussed in
Section 3 including, in particular, the thermal side channel. Some
concluding remarks are provided in Section 4.

2 AGING IN CIRCUITS
Aging is one of the major concerns in the current and emerging
CMOS technology where displacing just few atoms inside tran-
sistors due to aging phenomena may degrade the functionality of
circuit. Negative and Positive Bias Temperature Instability (NBTI
and PBTI) are the most prominent phenomena. In general, BTI
increases delays of pMOS and nMOS devices and hence circuits
become slower over time [10]. To ensure the correct functioning
of a circuit, guard bands (i.e., safety margins) are included in order
to compensate for and overcome any such delay increases dur-
ing the projected lifetime of the device. In advanced technologies,
larger guard bands are necessary since only a few defects within a
transistor can degrade its functionality.

A guard band is an over-design of the circuit to tolerate degra-
dations to sustain reliable operation during its projected lifetime.
A timing guard band can be implemented by adding extra time on
top of the maximum delay of the circuit as shown in Eq. 1 [12]:

tclk .per iod = tdelay (critical path) + tGB . (1)

To avoid the increase in overall power and hence on-chip power
density and temperature, timing guard bands are employed [11].
From a reliability perspective, circuit designers ponder two aging-
related questions: a) how can one accurately estimate guard bands?
and b) what is the smallest, yet reliable guard band?

2.1 Long-Term Aging
Classic long-term aging considers BTI-based mechanisms that only
increases the threshold voltage of transistors (Vth ) which leads to a
gradual increase in the circuit’s delay. It occurs when traps are gen-
erated at the Si-SiO2 interface when a negative voltage is applied
to a PMOS device [14]. (N)BTI increases the magnitude of thresh-
old voltage (Vth ) of the PMOS transistor under stress and hence
degrades the delay through it. At the circuit level, this manifests as
circuit timing and functional failures [5, 43, 66].

Figure 1 shows the threshold voltage dri� of a PMOS transistor
(at an operating temperature of 80◦C) that is continuously under
stress for 6 months (blue) as well as a transistor that is under stress
and recovery every other month (red). In practice, a PMOS tran-
sistor experiences stress (when the transistor is on, i.e., when a

Figure 1: Long-term aging: % change in threshold voltage of a PMOS
transistor over time due to BTI [39].

negative voltage is applied to its gate) and a recovery (when a posi-
tive voltage is applied to the gate of the transistor). �e impact of
BTI on circuit performance has become severe, especially a�er the
introduction of high-k gate dielectrics since the 45 nm technology
node [73]. For long-term aging, we use the model from [73].

However, other considerations have been noticed recently. �e
di�erent types of defects (i.e., interface and oxide traps) generated
by aging-related phenomena interact with the applied electric �elds
in the transistors and manifest as di�erent degradations. Besides
increasing Vth , aging degrades other device parameters including
carrier mobility (µ), transconductance (дm ), drain current (Id ), sub-
threshold slope (SS), and gate-drain capacitance Cдd [9]1.

In embedded systems that do not switch frequently between
high and low operating voltages (i.e., chips that do not employ
Dynamic Voltage and Frequency Scaling (DVFS)), considering BTI-
based aging may be su�cient.

2.2 Limitations of Long-Term Aging Models
Considering the impact of aging only on Vth underestimates the
overall impact of aging on circuit delay. Figure 2 con�rms this with
our aging analysis for the Berkeley Out-of-Order Machine (BOOM).
Considering onlyVth underestimates the impact of aging on timing
guard bands by about 22%. Neglecting impact of aging on carrier
mobility underestimates the guard bands by 11% [7]2.

Besides accurately modeling all physical origins of aging, con-
sidering the operating conditions of the embedded system is a
pre-requisite to improve the accuracy of estimates for the guard
bands. Such operating conditions include voltage, temperature, and
duty cycle (i.e., % of time the transistor is under stress).

�e operating conditions stimulate the aging mechanisms [63].
We used di�erent hardware and so�ware approaches to study how
workloads running on the system accelerate aging-induced degra-
dation [8]. �e workloads determine how a chip ages and how long
the guard band can hold before timing violations start to occur.
As a result of aging-induced degradations, transistors gradually
slow-down over their lifetime.

1based on our measurements on devices at the 45nm technology node.
2So�ware Download: �e short-term aging models, aging-aware cell libraries, reliabil-
ity framework, etc. are publicly available at [36].
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Figure 2: ∆Vth is one ofmany factors to considerwhen investigating
the impact of aging on circuit delay.

Further, to accurately estimate the guard band in advanced tech-
nology nodes, Random Telegraph Noise (RTN) needs to be con-
sidered as well. �is is because while BTI is the dominant aging
phenomenon in CMOS at high voltages (e.g., 1.2V) [41], RTN is
the dominant aging phenomenon at lower voltages (e.g., 0.7V) [71].
In [71], we reported the �rst comprehensive model that jointly
considers BTI and RTN-based aging allowing designers to accu-
rately assess the impact of long-term and short-term aging-induced
degradation across a wide range of voltages (Vdd ∈ [0.4V : 2.1V ]).

2.3 Short-Term Aging [70]
Besides the long-term reliability mechanisms which gradually in-
crease the delay in circuits, there has been a paradigm shi� in
our understanding that shows aging-induces short-term reliability
degradation as well [70]. �e reason behind this is integration of
voltage regulators that support ultra-fast voltage switching (sub-
µs) in Intel Haswell [17] and other chips. While ultra-fast voltage
switching reduces the overhead of voltage switching, it consider-
ably accelerates aging. Every time the voltage switches from high
Vdd to low Vdd , the circuit becomes sensitive to aging degrada-
tion [70]. While this increase in sensitivity to aging follows the
voltage changes instantaneously, the recovery from degradation
takes time.

When the circuit operates at high Vdd , higher degradations ac-
cumulate. When the voltage rapidly switches (i.e., within ≤ 1µs)
to a lower Vdd , the higher sensitivity at the lower Vdd combined
with the high degradations (accumulated at the previous high Vdd )
causes a temporal violation of the employed guard band. Such a
violation is transient because at the lower Vdd , recovery mecha-
nisms kick-in healing the accumulated aging. Figure 3 demonstrates
such guard band violations using SPICE simulations that employ a
physics-based aging model that accounts for voltage dynamics [31].
Not every high-to-low Vdd switching causes a transient error. �e
two pre-requisites for short-term aging induced transient errors are
a) the circuits spends su�cient time at the high Vdd to accumulate
enough degradations and b) the voltage switches to a su�ciently
low Vdd to amplify the impact of the degradation.

If the stress is not long enough or voltage switches barely to
a lower Vdd , transient errors may not occur. Short-term aging
does not occur when switching from low Vdd to high Vdd . �is is
because degradations at the lowVdd are weak and the resiliency to
degradation e�ects is large at high Vdd .
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Abstract—As feature sizes of transistors began to approach
atomic levels, aging effects have become one of major concerns
when it comes to reliability. Recently, aging effects have become a
subject to voltage scaling as the latter entered the sub-µs regime.
Hence, aging shifted from a sole long-term (as treated by state-
of-the-art) to a short and long-term reliability challenge.
This paper interrelates both aging and voltage scaling to explore
and quantify for the first time the short-term effects of aging.
We propose “aging-awareness” with respect to voltage scaling
which is indispensable to sustain runtime reliability. Otherwise,
transient errors, caused by the short-term effects of aging, may
occur. Compared to state-of-the-art, our aging-aware voltage
scaling optimizes for both short-term and long-term aging effects
at marginal guardband overhead.

I. INTRODUCTION

On-chip systems in the current and upcoming technology
nodes are thermally constrained [1] due to the continuing scal-
ing that steadily increases on-chip power densities. As a matter
of fact, voltage scaling techniques became inevitable in order
to fulfill performance constraints while obeying temperature
constraints [2]. While, on the one hand, increasing the supply
voltage (Vdd) allows to boost the CPU performance [3] due to
the higher operating frequency, decreasing Vdd, on the other
hand, helps avoiding critical temperatures.
Ultra-fast voltage scaling: The joint fulfilling of both per-
formance and thermal constraints necessitates to switch the
voltage very frequently. However, each Vdd switch invokes
a performance penalty due to the inoperative phases. This
is unavoidable since the power supply would be unstable
during switching due to charging/discharging the chip’s capac-
itances [4]. To increase the efficiency, manufactures started im-
plementing ultra-fast voltage regulators where Vdd switching
moved into the sub-micron regime like the Intel Haswell CPU
which switches between voltage levels within less than 1µs [4],
[5], reducing the performance penalty of voltage scaling.
Aging effects: In the nano-scale era, aging effects are at
the forefront of reliability concerns [6] due to their momen-
tous ability to cause hardware failures. During the operation
of transistors (i.e. applying/ceasing electric fields) the Bias
Temperature Instability (BTI) aging mechanism1, leads to
continuously breaking/annealing Si-H bonds at the Si-SiO2

interface as well as capturing/emitting charges in the oxide
vacancies inside the transistor’s SiO2/high-κ dielectric [8].
Overtime, generated defects manifest as a gradual shift in
the threshold voltage of a transistor (Vth). Aged (i.e. slower)
transistors degrade the reliability of on-chip systems as they
become less resilient to timing violations manifesting in errors.
Guardband: To sustain reliability during the entire lifetime
of an on-chip system, designers employ a guardband, i.e. a

1We focus solely on BTI as it is responsible for the highest degradation
compared to other aging mechanisms [7]. However, our work is applicable to
any mechanism featuring recovery, like Hot Carrier Injection.
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Fig. 1. Aging in conjunction with ultra-fast voltage scaling may lead to
transient errors due to the temporary violation of guardband

slack time (tguardband) that is added to the nominal delay of
chip (tnominal), to tolerate the slower operation due to aging.

fclock =
1

tclock
; tclock = tnominal + tguardband (1)

toperation > tclock ⇒ Timing violations

Aging in the scope of voltage scaling: In fact, aging is
accelerated/decelerated based on the strength of electric fields
and thus based on Vdd [8]. Hence, ∆Vth indeed follows the
tendencies of Vdd controlled by the employed voltage scaling
technique, i.e. higher Vdd → higher aging-induced ∆Vth and
vice versa. Importantly, switching Vdd in an ultra-fast manner
opens the door for emerging transient errors, as the Vdd will
be dropped much faster than the speed of aging recovery, as it
will be demonstrated in Section II. In practice, such transient
errors may appear immediately after switching from high to
low Vdd level due to the temporary violation of the guardband.
In Fig. 1, we show how toperation temporarily grows larger
than tclock after switching to a lower Vdd level. This is because
of the high ∆Vth, originating from the previous high Vdd
level along with the negligible recovery within a transition
time of <1µs. Recent measurements in [5] through an on-

Figure 3: Aging-related degradation at highVdd plus ultra-fast volt-
age switching cause short-term aging which results in transient er-
rors by temporarily violating the timing guard band [70].

In emerging embedded systems that switch frequently between
high and low operating voltages (i.e., chips that employ DVFS) in or-
der to meet performance and power constraints, it is a prerequisite
to consider BTI- and RTN-based aging e�ects.

2.4 Malicious Aging [39]
Deliberately accelerating aging degradation can undermine embed-
ded systems and is an emerging security threat. An adversary may
maliciously accelerate the aging of an IC (MAGIC) and shorten
its useful life as shown in Fig. 4. MAGIC denies service to the
IC user and in turn may cause catastrophic failure of the system
[39]. MAGIC exploits the fact that the circuit delay is input de-
pendent and that it exhibits its worst-case delay for speci�c input
pa�erns [77]. MAGIC a�ack identi�es such input pa�erns and
constructs a malicious program that generates such pa�erns. Exe-
cuting this malicious program on embedded devices such as mobile
phones, tablets, and PCs accelerates IC failure and can cause the
chip to fail sooner than expected, i.e., shortens the chip’s normal
lifetime. We used the long-term aging models [73] to demonstrate
MAGIC. One can envision at least two types of MAGIC a�acks [39].

Warranty Attack: A consumer C purchases a device manufac-
tured by company X. �e warranty period for this device is W
months. Consumer C uses the device for a while but when the de-
vice is still under warranty, a physical damage occurs (e.g., scratch
on the LCD). C wants to get a new device but the warranty does
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Figure 4: MAGIC violates guard bands by aging devices [39].

not cover physical damage. C downloads the MAGIC program
and the OS from forums such as Cyanogenmod [1], executes the
MAGIC program to intentionally wear-out the device and returns
the device to X to get a new one. In the warranty a�ack, the user
a�empts to brick the device. �e warranty a�ack may not in�ict
a considerable �nancial loss to the victim manufacturer, but may
hurt its reputation. In the warranty a�ack, MAGIC is created by an
expert-a�acker and launched by a non-expert malicious user. �e
expert-a�acker is usually an insider with access to the processor
netlist and can use VLSI CAD tools. �e expert-a�acker creates a
MAGIC program and distributes it to users to bring disrepute to
the manufacturer by wearing out even a few devices. On the other
hand, the goal of the novice user3 is to damage his device before
the warranty period expires and exchange it for a new one.
Planned Obsolescence: A malicious manufacturer M slows down
the previously sold devices in order to nudge (force) its customers
to buy a recently released device. M sends a patch to its customers
before releasing a new device. Installing such patch slows the older
devices forcing the users to buy the new device [55, 59, 65, 67, 78].
Planned obsolescence �nancially bene�ts the manufacturer by
nudging its customers to upgrade to the latest device. �e manufac-
turing company wears out the device. Planned obsolescence makes
the device stop working properly but malicious aging is hidden
from the user, i.e., pretending that the device has aged normally
and hiding that aging is due to MAGIC.

Figure 5 shows the design �ow (solid box) and the MAGIC a�ack
launched within this �ow (do�ed box). �e processor is synthesized
and netlist and layout are generated. �e layout is sent for fabri-
cation. A�er IC testing, fault-free ICs are shipped. �e warranty
a�ack can be launched as follows:

Step 1: Amalicious insider in the design house obtains the processor
netlist.
Step 2: �e a�acker identi�es the critical path in the processor and
creates input pa�erns that place this path under BTI stress. �e
a�acker analyzes the processor Instruction Set Architecture (ISA)
and cra�s instructions to create a MAGIC program to generate the
above pa�erns.
3We assume the non-expert user has a hacked Operating System (OS) installed and
has root access to his device.

Figure 5: �e MAGIC �ow is shown in the dotted box. �e attacker
identi�es the critical path, the input patterns which maximally
stress the gates in the path, instructions that generate the input pat-
terns and builds a MAGIC program. When the MAGIC program is
run, processor ages and fails prematurely [39].

Step 3: �e a�acker uploads the MAGIC program to a website and
the non-experts download and execute it on their processors.

MAGIC [39] was demonstrated on the OpenSPARC T1 processor
[56]. �e degradation was evaluated using the long-term BTI-based
aging model from [73]. �e execute stage (E-stage) in the processor
was maliciously aged. When the MAGIC program was executed,
the performance of the E- stage degraded by 10.92%, 13.25%, and
16.8% a�er one, two, and six months, respectively, bypassing guard
band and other protections, causing the processor to fail. MAGIC
pa�erns can be generated for any pipeline stage. For Open SPARC,
we chose E-stage as it has the critical paths.

Post-manufacture critical path may di�er from design-time crit-
ical path due to process variations. A�er manufacturing, when
the MAGIC program is executed, the design-time critical path will
age and become longer than the manufacture-time critical path.
We observed that the top 10 longest paths in the E-stage of the
OpenSPARC were within 2% of each other. �e change in thresh-
old voltage, and in turn the critical path delay, is a�ected by the
temperature. �us, temperature is another knob for the a�acker.

2.5 What are the Security Implications of
Short-term Aging ?

Short-term aging manifests as a temporal violation of the guard
band resulting in transient errors (i.e., timing violations by increas-
ing the path delay). We have and are investigating important ques-
tions along the following directions: a) short-term aging a�acks
be launched in a controlled manner to transiently undermine the
security of on-chip systems at speci�c instances and for speci�c
durations, b) short-term aging a�acks to accelerate warranty and
obsolescence a�acks that were demonstrated using long-term aging,
c) short-term aging as a standalone a�ack vector; if the temporal
violation of the guard band is large enough, the on-chip system
becomes unstable because of the unsustainable clock frequency
leading to errors/crashes in the so�ware due to the induced tran-
sient timing errors, and d) short-term aging as a trigger for a Trojan
that is inserted in the chip (e.g., by a rogue in the foundry) and lays
dormant until short-term aging e�ects exceed a threshold and then
activates its malicious behavior.
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3 SIDE CHANNELS [57]
Various analog side channel modalities including thermal, power,
electromagnetic (EM), magnetic, and acoustic are relevant to em-
bedded devices and have been heavily studied in the literature
[4, 13, 15, 19, 23, 25, 26, 28, 29, 32–35, 37, 38, 40, 51, 52, 54, 60, 61, 64,
68, 72]. Various e�orts have addressed side channels such as elec-
tromagnetic (EM) [22, 26, 28, 29, 32, 54, 72], acoustic [22, 30, 37, 49],
thermal [35, 38], magnetic [15], and power [24, 61]. Side channels
leak information from air-gapped devices by running malicious
code on the device so as to create signatures in the side channels
which when monitored can yield retrieve sensitive information. A
computer infected with malicious code that excites speci�c radio
frequency signal pa�erns using the graphics card can leak informa-
tion to a mobile phone with a radio FM receiver[34].

�e majority of the prior works have addressed side channels
in the context of emission pa�erns from digital devices and infor-
mation leakage through these analog side channels. Information
leakage can be viewed as a special case of monitoring wherein
speci�cally cra�ed code on the device generates sequences of activ-
ity pa�erns (of the processor load, clock, memory bus, peripherals,
etc.) that can be decoded by an air-gapped receiver to extract mes-
sages (e.g., a sequence of bits) sent by the code resident on the
device [44]. Multiple side channel modalities are applicable for
remote monitoring of the device state (e.g., whether the code exe-
cution on the device matches nominal expected pa�erns or exhibits
anomalies).

EM signals enable high-bandwidth monitoring of embedded pro-
cessors (up to several GHz) and code execution pa�erns within
the device by observing the signal frequency content and temporal
pa�erns. �e EM signals generated by the components of the em-
bedded processor – including the CPU, GPU, memory, clocks, data
storage components, voltage regulators, and input/output modules
and associated analog/digital circuitry and wiring – vary depend-
ing on their usage, computation, and communication pa�erns (e.g.,
use of system memory bus to exchange data between CPU and
memory). Actuators such as motors also generate distinctive EM
signal pa�erns during their operation. From high-bandwidth EM
signal measurements, machine learning techniques can provide a
high-level of detail of the device activity. EM signals generated
by components and operations in an embedded processor can be
di�erentiated by their frequency content and temporal pa�erns
yielding discernible signatures of events during code execution. To
capture noisy EM signals over a wide range of frequencies and un-
der clu�ered conditions, combinations of multiple receiver/antenna
pairs (e.g., helical, microstrip, Vivaldi) and antenna arrangements
can be used with optimized con�gurations for speci�c types of
devices. Multi-antenna geometric arrangements and polarizations
can enable robust data acquisition in noisy environments where
multiple devices and other EM sources may be present.

Power measurements provide aggregate readings re�ecting the
activity of the embedded processor including CPU and GPU us-
age pa�erns. Power measurements from CPS peripherals (such as
sensors and actuators) yield information on device activity. Over

a longer time scale, thermal measurements provide readings cor-
responding to CPS device activity. �ermal signatures can di�er-
entiate among components in a system (e.g., between two proces-
sors in a multi-processor system). Magnetic signals provide a low-
bandwidth device signature that can be used in conjunction with
EM signal measurements to detect hardware-level modi�cations
(e.g., unauthorized hardware changes or tampering), especially in
close proximity to the target device. Actuators (e.g., motors) gen-
erate distinctive acoustic signals correlated to their operational
states (e.g., RPM of a motor). Various physical processes in a micro-
controller generate an acoustic signal (e.g., vibrations of electronic
components in the power regulation circuitry), albeit outside the
human auditory range.

�ese analog side channels provide somewhat overlapping, but
complementary, sources of information about the state of the mon-
itored device. When multiple side channels are monitored, these
side channel signals can be sampled at di�erent sampling rates
depending on the sensing modality and then time-synchronized.
Fusion of multiple information streams enables robust, remote-
awareness of the state of the monitored device including the de-
vice characteristics, code modi�cations, and in general, real-time
analysis of the code execution state and control �ow within the
device.

�ese analog side channels can be complemented by on-processor
digital side channels that measure special-purpose registers (e.g.,
Hardware Performance Counters or HPCs). Real-time, on-device
monitoring using digital side channels have been studied [74–
76]. �ese methods can be used for signature-based detection of
malware and detection of device code-speci�c HPC pa�ern de-
viations. HPCs are special-purpose registers built into modern
processors (e.g., Intel x86, ARM, MIPS, and PowerPC). �e Num-
Checker [74, 75] and ConFirm [76] demonstrates that HPCs can
detect malicious �rmware and so�ware modi�cations [74–76]. For
example, HPC-based monitoring can detect kernel rootkits by ana-
lyzing the system call behavior of unmodi�ed and modi�ed code
blocks [74, 75].

Unlike on-device monitoring, the proposed approach uses remote
monitoring of analog emissions across an air-gap. While prior work
primarily used side channels as an information leakage mechanism
and considers security vulnerabilities of analog emissions from an
air-gapped device, the proposed approach uses these emissions for
real-time monitoring. In particular, we consider the thermal side
channel using an infrared camera and show that the code execution
on the device can be remotely monitored using sequences of thermal
images.

3.1 �ermal Side Channels
In this paper, the thermal side channel is considered as a representa-
tive remote sensing modality. �e high-resolution thermal imaging
testbed shown in Figure 6 is used for remote thermal monitoring
of a multi-core Intel processor. In order to keep the processor op-
erating without packaging and heat sinks, a stable and controlled
source of cooling is provided by a thermoelectric Peltier element
that dissipates the heat generated from the chip from the back side.
�is setup enables the thermal camera to capture the IR radiations
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Figure 6: �ermal monitoring setup and examples of thermal images of an Intel 8-core chip. [6]

emi�ed from the chip directly without any intervening layers in-
terfering with the radiations. Furthermore, the cooling mechanism
from the back side can be calibrated by changing the power to the
Peltier device to mimic the behavior of the original cooling of the
chip using heat sinks, packaging, etc.

�e thermal side channel monitoring approach described be-
low in this section considers CPS applications wherein embedded
devices run periodic computations. For instance, a CPS device im-
plementing a control algorithm (e.g., to control [46] motors and
other electromechanical systems) typically displays a relatively
well-structured temporal behavior as a repeated sequence of sensor
reading, sensor data processing, control algorithm computation,
and actuator writing steps as shown in Figure 7. Other CPS-relevant
applications (e.g., aggregating data from sensors, fusing data from
sensors to provide a situational awareness to a human operator,
etc.) have similar periodic code structures. �e periodicity of CPS
code results in well-de�ned periodic characteristics of (thermal)
side channel emissions from the device. Hence, by observing the
characteristics and the temporal pa�erns of side channel emissions,
deviations in the embedded device behavior during code execution
can be detected.

�e temporal pa�erns in the thermal imagery generated due
to the code running on the processor can be used to identify the
changes in code using machine learning. A simple approach will
extract low-dimensional features such as temperature variations in
each processor core, maximum, minimum or average temperatures
in the region of each processor core, frequency-domain features like
periodicity of the measured signal from thermal images. �e time-
series of such low-dimensional feature data can be used to detect
changes from the “nominal” behavior using a one-class Support
Vector Machine classi�er. Furthermore, an end-to-end machine
learning approach can be used to automatically learn subtle spatial
and temporal pa�erns of thermal images obviating the need for
manual feature extraction. One can automatically and implicitly
learn feature representations optimized for the device computa-
tional activity estimation and anomaly detection.

Similar to typical embedded controller code in CPS devices, a
code comprising of periodic iterations of a time period of relatively
high computational activity (activity time) followed by a �xed time
period of low activity (sleep time) is considered. An instantiation of
this code structure is characterized by a loop time period T and an
activity time period ∆. �e loop time period is the sampling time or
iteration time in an embedded controller code in a CPS device while
the activity time period ∆ is the amount of time required for the
computations performed in an iteration of the loop. �e sampling
time T is typically a �xed quantity that is chosen depending on
the task being performed by the CPS device while the activity
time period ∆ depends on the computations being done within
each sampling period. We consider a �xed period T and a variable
activity time ∆ ∈ (0,T ) and pose the machine learning problem
as estimation of ∆, given a time sequence of thermal heat maps
over a sliding window of time. From the estimated time-series of
activity times ∆, an anomaly detection algorithm probabilistically
determines whether the estimated activity times correspond to
expected values for the device based on the observation that a
cyber-a�ack that removes, adds, or modi�es code in a CPS device
will result in a modi�cation of the activity time. �e overall machine
learning methodology for computational activity time estimation
and thereby anomaly detection is shown in Figure 8.

For simplicity and to focus on machine learning based activ-
ity time estimation, we consider a scenario in which the activity
time ∆ is a nominally �xed during normal operation, ∆ could vary
during normal operation depending on, for example, input data
to the CPS device. �e methodology can extend to such a case by
characterizing ranges of temporal pa�erns of ∆ instead of a single
�xed nominal ∆ and basing anomaly detection on evaluation of the
deviation between the machine learning based estimated activity
times and the expected ranges or temporal pa�erns of activity time.

In our end-to-end machine learning based framework, a sequence
of thermal heat maps over a sliding window of time (de�ned here
to be 0.5 s, corresponding to 25 consecutive images since the ther-
mal imager provides 50 frames per second) of the microprocessor
over a time window are used as the input to a convolution neural
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Figure 7: �e periodic code structure in a CPS device comprises of periodically repeating computations interspersed with sleep times, e.g., a
loop of sensor reading, control algorithm calculations, and actuator writing with a �xed sampling time (a code snippet is shown on the right).
[57]

Figure 8: Machine learning based methodology to estimate the CPS device computational activity time and for anomaly detection from a
sequence of thermal heat maps. [57]

network (introduced in [57]) to predict the activity time. �e use
of a high-speed thermal imager will enable more precise activity
time prediction due to �ner temporal granularity.

�e proposed neural network architecture has �ve convolutional
blocks, each comprising of a spatial convolution layer, a recti�ed
linear unit (ReLU) layer and a max-pooling layer. �e number of
convolutional kernels in each block are 16, 32, 32, 64 and 64. �e
size of each convolutional kernel in all the blocks is 3x3 with a
stride of 1 and the size of each max-pooling kernel is 2x2 with a
stride of 2. �e weights of all the convolution blocks are shared
over all the images in the speci�ed time window. �e output of
the last convolutional block for all the images in the speci�ed time
window are �a�ened and combined. �e concatenated output is
passed through three fully connected neural network with a ReLU
non-linearity to output feature vectors of size 1024, 128 and 32
respectively. �e feature vector of size 32 is passed through a fully
connected neural network to predict the activity time. �e weights
of the network were optimized using Adaptive moment estimation
optimizer with a Huber loss function.

In order to generate the thermal heat map dataset for our end-
to-end learning system, code for various con�gurations of T and ∆
was implemented using the algorithmic structure shown in Figure 7.
�e code performs �oating-point calculations over the speci�ed
time periods. For each value of ∆, sliding time windows are de�ned
for the collected thermal data set with a stride of 5 frames, i.e., time
windows comprised of frames 1 to 25, frames 6 to 30, etc. �e set of
normalized gray-scale thermal images in a time window is input to
the end-to-end learning system which predicts the corresponding
value of ∆ for that data set. �e overall thermal dataset was split
into training and validation dataset with a ratio of 75:25. Extraneous
o�-die parts of the overall acquired thermal image are cropped out
of the overall heat map to obtain a heat map of 270x270 pixels.

�e accuracy of estimation of ∆ was evaluated on the testing
data set. �e estimation of ∆ for testing data sets with actual ∆
value of 0.1 s is shown in Figure 9. In this �gure, the time series of
estimates of ∆ for sliding time windows of thermal image sequences
(with a stride of 5 frames as discussed above; hence, a new estimate
of ∆ a�er every 0.1 s since the thermal imager provides 50 frames
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Figure 9: Estimates of computation time from sliding timewindows
of thermal heat maps collected with computational activity time
∆ = 0.1 s. �e top �gure shows the time series of estimates of ∆
from successive sliding time windows of heat maps and the bottom
�gure shows the histogram of the errors (predicted - actual) in the
estimated values of ∆. �e histogram shows that the estimated val-
ues of ∆ are centered around the correct value of 0.1 s with a Gauss-
ian distribution of errors around this correct value. [57]

per second) and histogram of the estimation error (estimated ∆ -
actual ∆) are shown. For the collected data sets with ∆ of 0.1 s and
0.2 s, the means of the absolute values of the estimation errors are
1.26 ms and 1.86 ms, respectively, and the standard deviations are
1.48 ms and 2.49 ms, respectively.

Based on the estimation of ∆ from sequences of thermal images,
anomalies (i.e., changes to the running code) are detected by proba-
bilistically matching sequences of estimated ∆ values over sliding
time windows of thermal images against the nominal ∆, or more
generally, expected ranges or temporal variation pa�erns of ∆. In
the simplest case wherein the nominal ∆ is a constant ∆nom , an
anomaly is detected if in a time sequence ∆t of estimated ∆ values
over a time window (set here to 2 s, i.e., 20 consecutive estimates
of ∆t ), a su�cient percentage (set to 90%) of ∆t are di�erent from
∆nom by more than a threshold (speci�ed here as 0.0015 s) and if
the mean of the estimates ∆t over the considered time window is
di�erent from ∆nom by more than a threshold (also 0.0015 s).

�e results of our anomaly detection algorithm on data sets col-
lected with ∆ se�ings in the ranges around 0.1 s and 0.2 s are shown
in Figure 10. �e anomaly detection likelihoods correspond to the
percentages of time windows in these data sets that the anomaly de-
tection algorithm declared as anomalous when comparing against
the nominal values of 0.1 s and 0.2 s, respectively. �ere are no
false positives and variations in ∆ by around 4 ms increase or 8 ms

Figure 10: Probability of classifying a time sequence of heat maps
as anomalous from a sliding window analysis of machine learning
based estimates of ∆) for a range of actual ∆ and expected ∆ of 0.1 s
(top �gure) and 0.2 s (bottom �gure). An increase in the computa-
tion time by as little as 4 ms is detected with 100% accuracy. �is
is noteworthy since the thermal imager provides 20 ms temporal
granularity (since it only supports 50 frames per second). [57]

decrease are detected as anomalous with 100% accuracy (i.e., with-
out false negatives). It is noteworthy that both the estimation of ∆
and the detection of variations of ∆ provide temporal granularities
superior to the 0.02 s (i.e., 50 frames per second) sampling period of
the thermal imager. �is indicates that the machine learning system
can use the �ne-grain variations in temperature and the spatial and
temporal pa�erns to accurately estimate the computation activity.

Changes in periodic code structures can be robustly detected
using the high-resolution thermal imaging data. While we use an
infrared thermal camera in our experiments, the algorithmic ap-
proaches can operate on scalar temperature measurement streams
as long as they are of su�cient thermal signal and temporal res-
olution. �e technique can be e�ectively used with on-processor
temperature measurements if the processor-integrated tempera-
ture sensors provide be�er resolution than the 1 degree Celsius
typically provided by the on-chip, integrated sensors (on-chip mon-
itoring using typical integrated temperature sensors and processor
fan was considered in [58]). To �nd the regions of the thermal
image (corresponding to discrete locations of a small set of on-chip,
thermal sensors) that are of most utility for estimating processor
activity, the machine learning system can be modi�ed to include a
sparsity-inducing component to automatically learn salient parts
of the image. A masking matrix approach was utilized in [57] for
this purpose. Salient parts of the thermal image were learned in
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terms of a masking matrix whose weights are learned through back-
propagation in an end-to-end manner along with the weights of
the proposed network architecture. �e sum of absolute values
of the weights was utilized as a sparsity-inducing regularization
component in the machine learning loss function. It was seen in
[57] that when retrained with this modi�ed loss function, a small
fraction of the overall image was su�cient to estimate ∆ without
any appreciable loss of accuracy. �us, it can be inferred that in-
tegrating high-resolution high-sampling-rate temperature sensors
into processors at strategic locations (which may physically corre-
spond to power circuitry, cores, caches, etc.) can enable accurate
estimation of computation times and robust anomaly detection.

4 CONCLUSION
While this paper addressed aging of and analog side channels in
embedded systems, there are connections/ synergies between these
two directions that are relevant to embedded systems security. Side
channels can be used to monitor for aging e�ects, both in the con-
text of detecting aging-based a�acks and also in the context of
facilitating device integrity testing using short-term aging as a sig-
nature for the monitored embedded device. Short-term aging can
be utilized to cause pa�erns of transient changes on the device to
leak information via side channels. On a device with a pre-loaded
malicious code, short-term aging can be used as a trigger to create
transient e�ects that wake up a Trojan on the device that then
executes the malicious code to leak information via side channels
from the device or the CPS physical process. On the �ip side, side
channel monitoring can be used to detect execution of such mali-
cious code. Aging e�ects (especially short-term aging) naturally
disappear following an a�ack due to the “recovery” intrinsic to
the aging mechanism. Subsequent forensic analysis to retrace the
a�ack is di�cult if not impossible. �is is unique to aging and
unlike other a�ack vectors that may leave a forensic trail.
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