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Integrated systems are critical to IT revolution

Embedded computing (cell phones, Cyber-physical computing (healthcare,
automotive, gaming) transportation, smart grid)

High performance computing (scientific
applications, forecasting, data centers)

Three paradigm shifts, i.e. low-power (~90s), network-centric
2 (~2K), and cyber-physical design (~2010). Exciting times ahead...




Low-power Design. Computation vs. communication
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[D. Greenfield, S. Moore, Computer J., 2008]

Multicore platforms are large scale distributed systems at
nanoscale; they are dominated by communication costs
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Need to understand the behavior of thousand core systems.

Network (routers+links) is the missing link in understanding.




CPS consist of networks of computational devices and
networks that monitor and control physical processes
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Multi-scale behavior has been observed in many technological,
economical, and biological systems

MPSoCs as CPS: Current multicore platforms bring together
computation, communication, and control
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Processing cores interconnected via routers and links; they
operate at various voltages/frequencies thus saving power




This presentation focuses on the new CPS paradigm and its
impact on future integrated systems

= Structure
* | Architecture and small world effects

Dynamics
Workloads and multiscale behavior

Control
Power and resource management

Our first insight into communication-based design came
through architecture (topology, buffer, etc.) optimization
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Can induce small-world effects in regular NoCs. This brings
huge performance improvements

Completely structured

Customized via LRL

Complete graph

n

b(n)=D(mn)=m+n-2
S

b(n): minimum number of broadcasting steps
D: network diameter

This way, the fundamental idea of Small World networks (aka
9  “six degrees of separation”) enters the multicore world

Small world effects can also be exploited to reduce hop
count in 3D wireless NoCs and improve performance
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Wired and wireless NoCs can be used intra-chip, while inter-
10 chip communication is based on wireless inductive-coupling.




Flow-control mechanisms, reconf

igurability, adaptive

routing have all been used to improve performance
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One way or another, they all exploit the small world effects...

Optimum path-seeking behavior

may be goal-oriented.

Need to collect fitness information locally, at routing nodes
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This presentation focuses on the new CPS paradigm and its
impact on future integrated systems

Dynamics
Workloads and multiscale behavior

Control
Power and resource management
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Packet inter-arrival times at interface queues play a
fundamental part in network behavjor
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Network behavior at high injection rates needs a non-
equilibrium approach that accounts for fractal behavior

i Local
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Global
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Free flow
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High injection rates cause inter-arrival times deviate from
15 exponential distribution and exhibit power law correlations.

Fractals are geometrical objects or stochastic processes
displaying self-similar behavior over multiple scales
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How long is the coast of Britain? Answering this question
involves statistical self-similarity and fractal dimension

Fractal dimension can be
computed via box counting Choose an increasing set R of edge lengths

For each size r;in R

— Super-impose a series of distinct
squares (boxes) over the data
— Count the minimum # of boxes

needed to cover data and store it in
vector N

Compute fractal dimension by fitting the
equation between Rand N

N(R)= R P

Box counting method can be applied to determine the fractal
dimension of 1D, 2D, or 3D vectors
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Real world processes are not always smooth. Fractional
dynamics needs a formalism stronger than integer calculus

Integer calculus approximation
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For CPS, time is an intrinsic component of the programming
19 model. Consequently, system dynamics becomes essential.




This presentation focuses on the new CPS paradigm and its
impact on future integrated systems

Control
Power and resource management

8-Core Xeon® Processor has three clock domains and three
voltage domains that help minimizing power.
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[Rusu, ISSCC 2009]

Device count reported 2.3B transistors. The chip has 9 temperature
sensors, one in each core hot spot and one in the die center.




Fine-grain power management becomes possible by
exploiting workload variations
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Fine-grain power management can be implemented via

control-theoretic approaches
Applications
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Accurate mathematical modeling and rigorous optimization
can enable cross-layer power management
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FOC consumes less power compared to a LQR controller
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How about core-to-core variability? Use frequency
asymmetry to reduce performance loss

--Fine-grained design

-4 Coarse-grained design
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Run leakier cores at lower voltages, but at higher than normal

frequencies for those voltages.
27 [Herbert et al, IEEE TVLSI 2012]




For thousand core systems distributed approaches for
power management are of crucial importance
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Not only a power issue...

Distributed and hierarchical controllers:

* Energy Controller (EC) corr:gré)éler CPI ks
— Output Frequency fic
+ Minimize power - CPl based CPI Kl

+ Performance degradation < 5%
+ Temperature Controller (TC)
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* fec Tcore, TheiHBoURS ’ T i K

— Output _-

+ Core frequency (frc)

[Slide courtesy of L. Benini, Bologna U.]




Peak temperature is important. DTM cannot be achieved by
considering power alone. Physical context is crucial...
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(sell,, — buy, ) — (sell; — buy;) > Tn
Agent-based systems can help system components (re)configure
and optimize their resource usage independently

Both centralized and distributed approaches have their
own limitations

Scalability issues due to cost and latency Highly scalable but potential
of long wires. Long synchronization times problems in control performance
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Need ‘best-of-both-worlds’ between fully-centralized and fully-
distributed solutions. This is true for thermal management too.
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An hierarchy of globally distributed locally centralized
control may help the system self-organize
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¢ Gets better with size

System Size Flat Mesh (nJ) WiNoC (nJ) Factor
128 1319 22.57 58x
256 2936 24.02 122x
512 4992 37.48 133x
‘ a) Direct Reconfiguration ‘
[Ganguly et al. IEEE Trans. Comp., 2010] b) Indirect figuration

[Heisswolf et al. ACM Trans. Reconfig. Tech&Syst, 2013]

Local control w/ full state information, global control w/
;3 partial information. Small world effects help convergence

This presentation focuses on the new CPS paradigm and its
impact on future integrated systems

Control
Power and resource management




A pacemaker analyzes the function of the heart; if
necessary, sends signals to correct certain abnormalities

voltage U According to Ohm's law :
|' -R VOLTAGE U (in volt) |

' “CURRENT | (in ampere) |

I comprises :
* lead resistance
* tissue impedance

A pacemaker (PM) is an electronic device
implanted in the body to regulate the heart

beat. A PM is not designed to defibrillate
the heart by the delivery of shocks.

It consists of a battery and electronic cir-
cuits enclosed in a hermetically sealed can.
The PM delivers electrical stimuli over leads
with electrodes in contact with the heart.
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37 [S. Barold et al. 2004]

Typical ECG tracing of the cardiac cycle (heartbeat) consists
of a P wave, a QRS complex, a T wave, and a U wave

oRs
Complex
—

Segment
L gmen
Segmasa T

PA Interval

QT Interval

R-R interval: Time between an R wave and the next R wave.
Normal resting heart rate is between 60-100 bpm (0.6-1.0sec)
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Heart rate is non-stationary. This means that its distribution
and its higher order moments vary with shifts in time
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Statistics of R-R intervals vary with time as a function of various
activities (sleep, running, etc.)
39 Heart rate datasets available at: http://www.physionet.org/

DFA can reveal the fractal dimension of R-R intervals
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Breakdown of fractal physiological control mechanism can
lead to highly periodic output (single scale) or randomness
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DFA can be applied to heart rate variability. Degradation of
fractal correlations can be used as a quick diagnostic tool.
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Controller finds the pacing frequency which minimizes the
deviation of ISE of heart rate from the reference value
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a(t)y(t)+bt)f(t)  y™ < y(t)< y™ ]

Atrial fibrillation is characterized by short R-R intervals. If
left untreated, it can lead to congestive heart failure
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FOC brings the R-R interval from 0.40 to 0.80 secs (i.e., a
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healthy heart rate of about 75 beats per minute)




Workload analysis should not be an afterthought. In real
CPS, network traffic is neither Poisson, nor stationary

dP(a,t)
gt
dM, (t)

o< P(a,t)

Classical dynamics: Linear Dependence &
Exponential Inter-Event Distribution

- Ml(t)

d“Pla,t)
Fractal dynamics: Linear Dependence & dE
Power-Law Inter-Event Distribution d“M 1(1)
= M, ()

el

< P(a,1)

Statistical properties of the workload have deep implications
in resource allocation, architectural design, RT scheduling, etc.
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In summary, thousand core systems offer ample
opportunities to bring science and engineering even closer

Hardware Capacity Software Programming

single task
uni-processor

f microcontroller/
microprocessor

‘ IP core¢$

®

multiple tasks
_ uni-processor
AU (multi-threading)

multiple tasks
multi-processors
(multi-processing)

g 2 H
User/application/OS optimization and resource management
is the next frontier to conquer.
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Finally...
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