Design of Future Integrated Systems: A Cyber-physical Systems Approach

Radu Marculescu Carnegie Mellon University Pittsburgh, PA 15213, USA

PATMOS-VARI, Karlsruhe Sept 9, 2013

Carnegie Mellon

Integrated systems are critical to IT revolution

Embedded computing (cell phones, automotive, gaming)

transportation, smart grid)

Cyber-physical computing (healthcare,

High performance computing (scientific applications, forecasting, data centers)

Three paradigm shifts, i.e. low-power (~90s), network-centric (~2K), and cyber-physical design (~2010). Exciting times ahead...

Low-power Design. Computation vs. communication

The Intel Pentium !!!

Multicore platforms are large scale distributed systems at nanoscale; they are dominated by communication costs

Last level cache (LLC) Memory controller (MC) & channels I/O controller(s) QPI controller, Power control unit (PCU), etc. Packet

BOOLY Firs

à,

PCU Memory Controller						
Q	С		С		Core*	
_ P	R	LLC	R	LLC	R	LLC
I		С		С		С
=	R	LLC	R	LLC	R	LLC
P C	С		с		С	
	R	LLC	R	LLC	R	LLC
e		С		С		С
	MC MC			M		

[U. Ogras, Tutorial ASPLOS 2012]

Need to understand the behavior of thousand core systems.
4 Network (routers+links) is the missing link in understanding.

This presentation focuses on the new CPS paradigm and its impact on future integrated systems

Can induce small-world effects in regular NoCs. This brings huge performance improvements

Wired and wireless NoCs can be used intra-chip, while inter chip communication is based on wireless inductive-coupling.

This presentation focuses on the new CPS paradigm and its impact on future integrated systems

Inter-arrival times

How long is the coast of Britain? Answering this question involves statistical self-similarity and fractal dimension

Fractal dimension can be computed via box counting

Choose an increasing set *R* of edge lengths For each size *r_i* in *R*

- Super-impose a series of distinct squares (boxes) over the *data*
- Count the minimum # of boxes needed to cover data and store it in vector N

Compute fractal dimension by fitting the equation between *R* and *N*

Box counting method can be applied to determine the fractal dimension of 1D, 2D , or 3D vectors

18

Real world processes are not always smooth. Fractional dynamics needs a formalism stronger than integer calculus

¹⁹ model. Consequently, system dynamics becomes essential.

This presentation focuses on the new CPS paradigm and its impact on future integrated systems

[Rusu, ISSCC 2009]

Device count reported 2.3B transistors. The chip has 9 temperature sensors, one in each core hot spot and one in the die center.

O BCLK

IO PLLs

Filter PLL

Un - core PLL

IO DLLs

Core PLLs

Accurate mathematical modeling and rigorous optimization can enable cross-layer power management

[Herbert et al, IEEE TVLSI 2012]

27

Peak temperature is important. DTM cannot be achieved by considering power alone. Physical context is crucial...

Agent-based systems can help system components (re)configure and optimize their resource usage independently

Both centralized and distributed approaches have their own limitations

Highly scalable but potential problems in control performance

Need 'best-of-both-worlds' between fully-centralized and fullydistributed solutions. This is true for thermal management too.

An hierarchy of globally distributed locally centralized control may help the system self-organize

Orders of magnitude!Gets better with size

System Size	Flat Mesh (nJ)	WiNoC (nJ)	Factor
128	1319	22.57	58x
256	2936	24.02	122x
512	4992	37.48	133x

[Ganguly et al. IEEE Trans. Comp., 2010]

Local control w/ full state information, global control w/ partial information. Small world effects help convergence

This presentation focuses on the new CPS paradigm and its impact on future integrated systems

Structure Architecture and small world effects

Control Power and resource management

A pacemaker analyzes the function of the heart; if necessary, sends signals to correct certain abnormalities

Typical ECG tracing of the cardiac cycle (heartbeat) consists of a P wave, a QRS complex, a T wave, and a U wave

R-R interval: Time between an R wave and the next R wave. Normal resting heart rate is between 60-100 bpm (0.6-1.0sec)

DFA can reveal the fractal dimension of R-R intervals

10²

n

0

10¹

10⁻¹

10⁰

10⁴

 $F(n) \approx n^{\alpha}$

10⁻²

10¹

10²

n

10³

42

10³

Controller finds the pacing frequency which minimizes the deviation of ISE of heart rate from the reference value

Atrial fibrillation is characterized by short R-R intervals. If left untreated, it can lead to congestive heart failure

FOC brings the R-R interval from 0.40 to 0.80 secs (i.e., a healthy heart rate of about 75 beats per minute)

45

Workload analysis should not be an afterthought. In real CPS, network traffic is neither Poisson, nor stationary

Classical dynamics: Linear Dependence & Exponential Inter-Event Distribution

Fractal dynamics: Linear Dependence & Power-Law Inter-Event Distribution

$$\begin{aligned} \frac{dP(a,t)}{dt} &\propto P(a,t) \\ \frac{dM_1(t)}{dt} &\propto M_1(t) \end{aligned}$$

$$\frac{\frac{d^{\alpha} P(a,t)}{dt^{\alpha}} \propto P(a,t)}{\frac{d^{\alpha} M_1(t)}{dt^{\alpha}} \propto M_1(t)}$$

Statistical properties of the workload have deep implications in resource allocation, architectural design, RT scheduling, etc.

46

47

Finally...

Contributors

Paul Bogdan (Univ. of Southern Calif.), Umit Y. Ogras (Intel), Siddharth Garg (Univ. of Waterloo), Diana Marculescu (Carnegie Mellon Univ), Chen-Ling Chou (Qualcomm), Qian Zhiliang (Hong Kong Univ Sci&Tech), Chi-Ying Tsui (Hong Kong Univ Sci&Tech), Hiroki Matsutani (Keio Univ).

Relevant papers - www.ece.cmu.edu/~sld

Sponsors

48

Intel Corporation

