
SPP1500.itec.kit.edu

by Jörg Henkel

Dependable Software for
Undependable Hardware

… in collaboration with Muhammad Shafique and Semeen Rehman
and members of the SPP 1500

2

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Overview

!   Technology Induced Dependability

Problems
!   Solutions at System-Level with

focus on Software

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

In the Past …

!  … Moore’s Law provided a win-win situation:
!   Smaller feature size
!   Higher integration density, more functionality
!   Lower power consumption
!   Higher speed (performance)
!   Less cost (per-transistor costs)
!  …

ITRS

Gordon E. Moore
(co-founded Intel in 1968)

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

In the Future …

Quelle: Intel Corp., 2005
q  … Problems

q  Complexity: In 2017 100 Billion Transistors on chip
q  Productivity gap
q  Thermal problems
q  Increasing relevance of aging effects
q Manufacturing defects, process varation
q  Stochastic effects since physical limits are reached
q  Decreasing yield

q  … Problems
q  Complexity: In 2017 100 Billion Transistors on chip
q  Productivity gap
q  Thermal problems
q  Increasing relevance of aging effects
q Manufacturing defects, process varation
q  Stochastic effects since physical limits are reached
q  Decreasing yield

Reliability

ITRS

Gordon E. Moore
(co-founded Intel in 1968)

5

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Technology Scaling

Si Substrate

Metal Gate

High-k

Tri-Gate

S

G

D

III-V

S

Carbon
Nanotube FET

50 nm
35 nm

30 nm

SiGe S/D
Strained
Silicon

SiGe S/D
Strained
Silicon

 90 nm
 65 nm

 45 nm
 32 nm

 2004
 2006

 2008
 2010

 2012+

20 nm 10 nm

5 nm

5 nm

5 nm

Nanowire

Manufacturing Development Research

(Src: S. Borkhar, DAC‘07)

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Variabilities

! Variability of transistor structures
!   Channel Length
!   Isolators thickness (gate

oxid) gate <-> transistor
channel

! Randomized Dopant
Fluctiations (RDF) ->
Threshold voltage

=> Decreasing mobility
=> Increasing leakage

!   Counter Measures
! Strained Silicon Engineering

! Strain channel to
increase mobility

!   „High-K“ materials for gate
isolation (e.g. Hafnium)
!   May increase aging

!   ...

Q
ue

lle
: I

nt
el

, 6
5

nm

fre
qu

en
cy

Leakage

Variations for processors an single die

1.2 nm 32 nm

Q
ue

lle
: I

nt
el

, 6
5

nm

latency of an Inverter

d
op

. a
to

m
s

of dop. atoms in T-channel

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Aging Effects

!   Elektromigration (EM)

!   Stress Migration

!   Time-dependent Dielectric
 Breakdown

!   …

=> dependent upon operating
 temperature !

Wire affected by electro migration

Technology nodes [nm]

Po
we

r d
en

sit
y [

W
/cm

2]

Hot plate

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Increasing Susceptibility
to Soft Errors
! Ionizing rays may change charge

concentration
!   (like He2+)
=> may lead to bit flips

!   α-rays
! Radioactive decompostion of
 non-pure chip material

! Cosmic rays (e.g. neutrons)
!   accelerated through technolgy
 advancements

!   Low voltage and capacitances
! Representation of bits through

 smaller and smaller charges

HeYX A
Z

A
Z

4
2

4
2 +→ −
−

Transient errors through neutrons

Re
l. #

 o
f t

ra
ns

ien
t e

rro
rs

Transient errors

9

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Soft Errors through Radiation

n+ n+

p+

N-W
ell

P-Well

P-Substrate

Isolation

Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

!   radiation effects on semiconductor devicesàSoft Errors
!   alpha particles
!   low-energy neutrons
!   high-energy neutrons/protons

!   radiation event
!   ion track formation
!   ion drift
!   ion diffusion

!   Sensitive areas:
!   Channel region of NMOS
!   Drain region of PMOS
!   “off” state is more sensitive

n+

- -
--- --

- -
-- -
- --
-
-

-

- -
-
-

-
- -

++++
+
+
+++

++++++
+
+
++
+++
++
+
++

++

n+

-
-

--

-

-
- --

- -

- -

-

-
-

-

--

+

+
+

+

++
++ +

+
+

++

3

2

1

0
10-13 10-12 10-11 10-10 10-9

Time (seconds)

C
ur

re
nt

 (a
rb

itr
ar

y
un

it)

Source: Baumann, TI@Design&Test’05, Ziegler, IBM@IBM JRD’96

HeYX A
Z

A
Z

4
2

4
2 +→ −
−

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Heat Remains a Problem …

Folgerung?

“Circuit heat generation is the main limiting factor
for scaling of device speed and switch circuit density”

By Jeff Welser, Director SRC Nanoelectronics Research Initiative, IBM,
Opening Keynote Address ICCAD 2007

(Src: K. Skadron: Low-Power Design and Temperature Management;
IEEE Micro, Vol. 27, No. 6, 2007)

MTTF [years]

Temp (Celsius)

K
. S

ka
dr

on
 e

t a
l.,

 IC
C

A
D

 2
00

4

6.85 7.24
7.73

8.34
9.06

5
6
7
8
9

10

0 5 10 15 20 25

11

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Thermal “Runaway” Problem

!   Temperature and leakage: thermal “runaway” problem:
!   Increase in temperature leads to increase in leakage power

à feedback loop possible!
!   Sub-threshold leakage

approximated by

where A and B are constants
à exponential growth!

B
T

subI A e
−

≈ ⋅

[Zhang 2003]

12

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Temperature-Dependent Effects

!   Process variations and electromigration can result in hillocks
and holes
!   Lead to open failures or short circuit

failures respectively
!   Failures may be temperature dependent

due to material expansion
!   Holes may function normally at high

 temperatures but fail at low
 temperatures

!   Hillocks may function normally at low
 temperatures but short circuit at high
 temperatures

[W.D. Nix, 1992]

Hole/crack

Hillock

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Temperature in 3D
!   3-D chips especially problematic

3-D structures

(Src: Y. Xie, PennState)

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

!   Problem: vertical heat flow
!   Only one layer directly interfaces with the heat sink
!   Heat needs to dissipate through multiple layers

!   The heat sink is located on
top of the chip

!   Hot cores distant to the heat
sink dissipate their heat
through other layers

!   Silicon has a low thermal
conductivity!
!   150 W/(m*K) (Silicon)
!   401 W/(m*K) (Copper)

Temperature in 3D

15

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Temperature: Gradients matter …
!  MTTF also affected by thermal gradients

!   à Goal: balance temperatures

Spatial gradients
Simulated Thermal map Pentium M

Temporal gradients
[K. Skadron, 2005]

[L.Finkelstein, Intel 2005]

16

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

S
rc

: H
en

ke
l,

E
bi

, A
m

ro
uc

h

!   Example showing localized computation

MTTF [years]

Temp (Celsius) K
. S

ka
dr

on
 e

t a
l.,

 IC
C

A
D

 2
00

4

6.85 7.24 7.73
8.34

9.06

5
6
7
8
9

10

0 5 10 15 20 25

Temperature: Hot Spots

17

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Real Temperature Measurements
Temp max: 89.2 °C
Temp min: 60.2 °C
Thermal variation: 29°C
Spatial thermal gradient: ~1,93 °C/mm

resources
LUTs 2000
FFs 2000

DSPs 12
Bram 0
DCM 1

Frequency 600 MHz
Area 6% of chip

Properties of the tested region

18

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Effect of Temperature …
!   Hardware prototype : Xilinx Spartan3e FPGA with 4 Picoblaze

tiles; thermal sensors realized through ring oscillators
S

rc
: H

en
ke

l,
E

bi
, A

l F
ar

uq
ue

19

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Aging: TDDB

!   TDDB: Time Dependent
Dielectric Breakdown
!   Created by:

!   Accumulation of trapped charges
at dielectric

!   Effects:
!   Increase of power consumption
!   Slowing of switching speed
!   Or: may destroy transistor

(TDDB)

20

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Aging: Electro-Migration

Source: [Stott, 2010]

(Electro-migration)

!   Electro-migration: aging effect
due to transport of mass in metal
interconnects

!   directly linked to temperature
!   Basic Mean time to failure modeled

by Black’s Equation:

!   MTTF decreases exponentially
with temperature

à Goal: reduce peak temperatures

[wikipedia]

Q
n kTMTTF Aj e

⎛ ⎞
⎜ ⎟− ⎝ ⎠=

21

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Aging: NBTI

!   Negative Bias Temperature
Instability
!   Breakdown of Si-H bonds at

the silicon-oxide interface due
to voltage/thermal stress
à causes interface traps

!   Affects mostly P-MOSFETs
because of negative gate bias
!   Effect in N-MOSFETS is

negligible

!   NBTI is not yet fully understood

n
p

S oxide
gate

D

Si Si Si

H+ O H H

P-type MOSFET

Si Si

O H trap

Vg

Vg < 0 à STRESS! Vg = 0

p

22

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

!   NBTI manifests itself as a shift in Vth
!   Causes increase in transistor delay
!   Delay faults are responsible for

NBTI induced bit-flips and resulting
circuit failure

!   Recovery effect in periods of no
stress
! When voltage and temperature are

low, Vth can shift back towards ist
original value

!   Full recovery from a stress period
only possible in infinite time
à In practice overall Vth shift
increases monotonously over longer
periods, e.g. months/years

V
th

 s
hi

ft
[V

]
Time

Stress Recovery

V
g

[V
] 0

-1

Aging: NBTI

23

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Std deviation in 65nm SRAM P-MOSFETS Std deviation at 32nm

V
th

 s
hi

ft
[V

]

V
th

 s
hi

ft
[V

]

Time [years] Time [years]

SRAM Vth shift
Std. deviation

SRAM Vth shift
Std. deviation

!   Mean Vth shift mainly due to Temperature/Voltage
!   Small technology nodes have less Vth shift due to lower voltages

!   However: Standard deviation of Vth shift mainly due to structure size
!   Small technology nodes and small P-MOSFETs (e.g. SRAM) show large

deviations from the mean Vth shift à inceased reliability concern

Src: IBM, KIT

Aging: NBTI

24

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Other Effects

This was not a complete list …

Goal: How can we address the negative effects caused by the
inherent unreliability observed at transistor and physical level
when migrating to new technology nodes?

25

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

So, what are the solutions … ?

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Solutions: Device Level
FinFET-Transistor

Idea: reduce channel thickness
But: reduced mobility

CNFET-Transistor

Idea: combine high mobility and
thin channel width
But: problems in placement and
structural growth

Spin-Transistor

Single-Electron Transistor

NanoPLA block
and 3D Interconnect

Source: DeHon
Injection of spin-polarized electrons at
source V-gate affects spin trace electron
current only when electron spin parallen
to drain-spin

 Idea:low power dissipation
 But: hard to control => high error rates

Graphene-Transistor

27

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Solutions: System Level

Devices, Technology, Physics, …

Logic

Architecture

HW/SW System

Physical
sources

Faults

Error

Failure

Bit-Flip
Single/multi

Temporal and
Spatial correlated

Radiation Process variation
Temperature Coupling (C)

Jitter
Signal /

Vdd noise

Crosstalk

Wrong CPU
reg. value

Wrong branch
decision

Crash Data
corruption

“No effect”

Permanent/
transient

Electro-
migration

Fault Model
is needed!

28

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

!   Hardware-dependent software
!   Operating system and

middleware
!   Management of

observation
strategies

!   Performing online
tests

!   Perform adaptation
!   Scheduling and allocations

schemes
!   Application software:

!   instruction-level
!   task-level
!   algorithm level

Solutions: System Level

29

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

!   Hardware Architectures: various levels
!   Register-Transfer
!   Micro-Architecture
!   System-on-Chip

!   Technology Abstractions provides
physical properties

!   Distinguish between:
!   Permanent and transient

problems
!   Fabrication time and run-time

(detect and fix)
!   Possible means:

!   Masking of undependable
components

!   Reconfiguration
!   static
!   dynamic

Solutions: System Level

30

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

Technology Abstraction

!   This SPP does not deal with
technology!

!   Means and architectures should be as
technology independent as possible

!   Technology abstraction should:
!   Characterize technology
!   Provide technology parameters
!   Model undependability
!   …

Solutions: System Level

31

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

Technology Abstraction

Solutions: System Level

32

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

Technology Abstraction

O
pe

ra
tio

n/
O

bs
er

va
tio

n/
A

da
pt

at
io

n

Solutions: System Level

33

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

Technology Abstraction

O
pe

ra
tio

n/
O

bs
er

va
tio

n/
A

da
pt

at
io

n

D
es

ig
n

M
et

ho
ds

Solutions: System Level

34

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Dependable Embedded Software

Dependable Hardware Architectures

Technology Abstraction

O
pe

ra
tio

n/
O

bs
er

va
tio

n/
A

da
pt

at
io

n

D
es

ig
n

M
et

ho
ds

Solutions: System Level

35

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Cost per Transistor

Goal
C

os
t

Reliability Cost

Product Cost

time

Error
Resiliency

Scaling NOT profitable Scaling profitable

36

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Can we address these
problems at Software Level ?

(Src: paragoninnovations)

37

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

… leads to the questions: How
does an Error articulate ?

src: Sani Nassif, talk @ SPP 1500 Colloquium in Stuttgart 2011

38

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

src: Sani Nassif, talk @ SPP 1500 Colloquium in Stuttgart 2011

How does an Error articulate ?

39

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Improving Reliability at Software Level

Software Techniques
!   Redundant instructions, Comparison &

Control flow checking instructions, EDDI
[Oh’02], SWIFT & CRAFT [Reis’05]
à >200% performance overhead
à large memory overhead

!   Compiler-Level techniques: register-file
reliability [Hu’06], partially-protected
register allocation [J. Yan’05], instruction
scheduling [G.Memik’05][X. Fu’08]
à Often insufficient reliability estimation
and improvement : 2%-9%
 à do not consider the vulnerability of
overall processor resources used by
different instructions

Compiler-directed techniques may help
increase reliability

40

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Not all Soft Errors are of same
Criticality

!   Soft Error propagation into the Software Layer
!   Different impact dependent upon affected component

Instruction
Cache/
Memory
(IM)

Data
Cache/
Memory
(DM)Instruction

Execution
Unit	
 (IEU)

+
PipelineRe
gi
st
er
	
 F
ile

0x180: ld [fp+(0xfdc)], g1
0x184: and g1, (0xff), g3
0x188: sethi 0x3e, g1
0x18c: or g1, (0x334), g2
0x190: sll g3, (0x2), g1

0x194: add g1, g2, g1
0x198: ld [g1+(0xc00)], g1
0x19c: xor g4, g1, g1
0x1a0: xor i5, g1, g1

Strike on Register File
!   corrupted operand
!   wrong output value
→ Tolerable?

Strike on Instruction
Decoder
!   corrupted opcode
!   crash
→ Not Tolerable?

Error Type at Software Layer depends on
1)  Fault Location
2)  Instruction Type using different components

[Photo: Gaisler @ IEEE DSN’02]

41

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Spatial and Temporal Vulnerability
!   Spatial vulnerability: probability of a fault depending upon the area

of specific processor resources used by the instructions
!   Temporal vulnerability: probability of a fault depending upon the vulnerable

periods of an instruction in a certain pipeline stage

Instruction
Cache/
Memory
(IM)

Data
Cache/
Memory
(DM)Instruction

Execution
Unit	
 (IEU)

+
PipelineRe

gi
st
er
	
 F
ile

[Photo: Gaisler @ IEEE DSN’02]

42

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

ic Vu lnerable c
ic

c
c Pr oc

Vu lnerablePeriod * BitsIVI
TotalBits

−

∈

=
∑

Reliability Model: Instruction Vulnerability Index

ic c faultc Pr oc
i

cc Pr oc

IVI * A * P (c)
IVI

A
∈

∈

=
∑

∑

iàInstruction
ProcàProcessor components
CàParticular processor
component
Acà Area of the component
Pfault (C)à Probability of a fault
observed at the output of
component 'c'

IVIicàIndividual vulnerability of
instruction i at component C
BitsVulnerable-c àVulnerable-
bits of component 'c' out of
TotalBitsc
TotalBitsc à architecturally-
defined size

!   Accumulated vulnerability of
instruction during its complete
execution in pipeline stages

!   Individual vulnerability of the
instruction 'i' at component 'c'

43

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Issue	

Cycle
1 load	
 r1	
 ß	
 a
2 load	
 r2	
 ß	
 b
3

Schedule	
 1:
Performance-­‐Driven

load	
 r3	
 ß	
 c
4 load	
 r4	
 ß	
 d
5 r2	
 ß	
 r1	
 *	
 r2
6 r4	
 ß	
 r3	
 *	
 r4
7 NOP
8 store	
 r2	
 à	
 e
9 store	
 r4	
 à	
 f

load	
 r1	
 ß	
 a
load	
 r2	
 ß	
 b
NOP
r2	
 ß	
 r1	
 *	
 r2
NOP
NOP
store	
 r2	
 à	
 e
load	
 r1	
 ß	
 c
load	
 r2	
 ß	
 d
NOP
r2	
 ß	
 r1	
 *	
 r2
NOP
NOP
store	
 r2	
 à	
 f

10
11
12
13
14

Schedule	
 2:
Register	
 File

Reliability-­‐Driven

3

#Reg	
 =	
 4,	
 #Cycles=9
Vulnerable Periods=18

FVIReg=6.3%

4
3
2

3
3

3 2

3

3
2

3

#Reg	
 =	
 2,	
 #Cycles=14
Vulnerable Periods=16

FVIReg=3.6%

Arrows show
the Vulnerable

Periods

Analyzing Reliability Impact of
Instruction Scheduling

44

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

load	
 r1	
 ß	
 a
load	
 r2	
 ß	
 b
NOP
r2	
 ß	
 r2	
 *	
 r1
load	
 r3	
 ß	
 c
load	
 r4	
 ß	
 d
store	
 r2	
 à	
 e
r3	
 ß	
 r3	
 *	
 r4
NOP
NOP
store	
 r3	
 à	
 f

load	
 r1	
 ß	
 a
load	
 r2	
 ß	
 b
load	
 r3	
 ß	
 c
r2	
 ß	
 r1	
 *	
 r2
load	
 r1	
 ß	
 d
NOP
r3	
 ß	
 r3	
 *	
 r1
store	
 r2	
 à	
 e
NOP
store	
 r3	
 à	
 f

Issue	

Cycle
1
2
3
4
5
6
7
8
9

load	
 r1	
 ß	
 a
load	
 r2	
 ß	
 b
load	
 r3	
 ß	
 c
r2	
 ß	
 r1	
 *	
 r2
load	
 r1	
 ß	
 d
NOP
store	
 r2	
 à	
 e
r3	
 ß	
 r3	
 *	
 r1
NOP
NOP
store	
 r3	
 à	
 f

10
11
12
13
14

Schedule	
 3:
Reliability-­‐Driven	
 under	

Performance	
 Overhead	
 Contraint
τP1	
 (reduce	
 spatial	
 vulnerability)

Schedule	
 4:
Reliability-­‐Driven	
 under	

Performance	
 Overhead	
 Contraint
τP1	
 (reduce	
 temporal	
 vulnerability)

Schedule	
 5:
Reliability-­‐Driven	
 under	

Performance	
 Overhead	

Contraint	
 τP2

3 2

4
2

3

4

3 2

53
3

3

3 2

3

2

3

3

#Reg	
 =	
 3,	
 #Cycles=11
Vulnerable Periods=19

FVIReg=5.6%

#Reg	
 =	
 4,	
 #Cycles=11
Vulnerable Periods=16

FVIReg=4.5%

#Reg	
 =	
 3,	
 #Cycles=10
Vulnerable Periods=18

FVIReg=5.4%

Analyzing Reliability Impact of
Instruction Scheduling

45

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Example: SAD
Schedule 1

108: ldub [o0+g0],g2
10c: ldub [o1+g0],g1
110: sub g1,g2,g3
114: subcc g2,g1,g2
118: bpos,a 0x120
11c: mov g2,g3
120: add g3,g4,g4
124: ldub [o0+(0x1)],g2
128: ldub [o1+(0x1)],g1
12c: sub g1,g2,g3
130: subcc g2,g1,g2
134: bpos,a 0x13c
138: mov g2,g3
...

128: ld [o3+g0],g2
12c: ld [o4+g0],g3
130: and g2,(0xff),i4
134: and g2,o5,g1
138: sra g1,(0x8),i3
13c: and g2,o7,g1
...
14c: and g3,(0xff),g4
150: and g3,o5,g1
154: sra g1,(0x8),i5
...
164: subcc i4,g4,g2
168: bpos 0x174
...
170: sub g4,i4,g2
174: subcc i3,i5,g4
178: bneg,a 0x180
17c: sub i5,i3,g4
...

Schedule 2

i4

i3

g4

i5

Registers used:
27

Vulnerable period:
45,642

Registers used:
17

Vulnerable period:
31,923

g2
g1

g2
g1

Bars denote register
vulnerable periods

Bars denote register
vulnerable periods

46

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

SAD: Analysis

Schedule 1 Schedule 2
Performance [cycles] 2124 2241 ì

Registers used [number] 27 17 î

Vulnerable period [cycles] 45,642 31,923 î

IVIREG 0.0817 0.0542 î
IVICC 0.1205 0.4569 ì

IVIALU 0.7505 0.4212 î
IVIALL 0.1584 0.1367 î

47

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Compiler Infrastructure for Reliabe
Software

Profiling

Compilation Front- & Middle Ends

C/C++
Code

Reliability-aware Transformations

Application
Analysis (e.g., reg.

usage Intervals)

Processor Model:
area of components,

#Registers, …)

Machine
Code

Iterative
Improvement

High-Level IR

Low-Level IR and Optimizations

Source-Code Analysis

Selective Instruction Redundancy
(SWIFT, CRAFT, etc.)

Compilation Back-End

RAISE: Reliability-Aware
Instruction SchEduling

Register Allocation

Basic Block Prediciton
(using GCC framework)

Dependency Graph

User-Provided
Tolerable Performance
Overhead Constraint

Vulnerable Perdiod Analysis

Static Estimation of Instruction
Reliability Cost

Application Composition
for Reliable Code Generation

Reliability-Enhanced Assembly code

Binary Utilities

Reliability-Aware
Instruction Set

Simulator
[fault injection,

Program
Reliability

Estimation, Error
Analysis]

Reliability
Estimation
Model (IVI)

48

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Software Level

!  ... other approaches ...

49

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Application and OS Level

�  An error is signaled,
©  Error detection executed in a short amount of time,

classification decides if, when and how to handle the error,
�  Normal system execution continues,
➂  If required, error correction takes place after timing-critical tasks have

finished but before error has fatal consequences.

➁ ➀

©

➂

(Source: Marwedel/Engel)

50

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Application analysis provides
information on error propagation

!   Values assigned to reliable
variables must also be
reliable

!   Unreliable variables can
tolerate errors

!   Constraints:

!   Pointers/array indices
must be reliable

!   Loop Conditions must be
reliable

!   Reliability of
if-conditions depends on
statements inside body (Source: Marwedel/Engel)

51

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Conclusion
!   Each new technology nodes introduces new dependability

problems or makes existing ones worse
!   Natural way to fix the problem: technology and device level
!   However: there are opportunities at HW architecture and

Software …
!   Software Level:

!   Software can’t erase the problem of unreliable hardware
!   BUT: it can contribute and relieve the problem
!   Reliability increase basically comes for free (probably some

performance overhead

!   Conclusion: Technology-induced reliability problems should
be addressed at ALL Abstraction Levels!

52

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Thank you for
 Attention!

53

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012

Literature

“Reliable software for unreliable hardware: Embedded code generation
aiming at reliability” BEST PAPER AWARD
In Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2011
Proceedings of the 9th International Conference on
9-14 Oct. 2011, Rehman, Shafique, M. ; Kriebel, F. ; Henkel, J.
Page(s): 237 - 246

-> Paper attached

Reliable Software for Unreliable Hardware:
Embedded Code Generation Aiming at Reliability

Semeen Rehman, Muhammad Shafique, Florian Kriebel, Jörg Henkel
Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany

{semeen.rehman, florian.kriebel} @ student.kit.edu; {muhammad.shafique, henkel} @ kit.edu

ABSTRACT
A compilation technique for reliability-aware software transfor-
mations is presented. An instruction-level reliability estimation
technique quantifies the effects of hardware-level faults at the
instruction-level while considering spatial and temporal vulnera-
bilities. It bridges the gap between hardware – where faults occur
according to our fault model – and software (the abstraction level
where we aim to increase reliability). For a given tolerable per-
formance overhead, an optimization algorithm compiles an appli-
cation software with respect to a tradeoff between performance
and reliability. Compared to performance-optimized compilation,
our method incurs 60%-80% lower application failures, averaged
over various fault injection scenarios and fault rates.

Categories and Subject Descriptors
D.3.4 [Processors]: Code Generation, Compilers; B.8 [Perfor-
mance and Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms: Algorithms, Design, Reliability, Perfor-
mance

Keywords: Reliability, dependability, reliability estimation,
instruction vulnerability estimation, reliable software, code gener-
ation, embedded systems, technology scaling, reliability-aware
software transformations

1. INTRODUCTION AND RELATED
WORK
Shrinking feature sizes as a result of technology scaling have led to
an increased hardware susceptibility to soft errors (transient faults
due to voltage scaling or high energy particles from cosmic rays or
packing materials strike on the underlying transistors) [1][2]. Soft
errors may cause spurious bit flips in the underlying hardware that
may then propagate through the software layer and finally jeopard-
ize software correctness. Extensive reliability-increasing research
has been conducted at hardware-level [3][4][5]. Hardware-level
soft-error mitigation methods typically incur significant area, per-
formance, and power overhead. Software-level reliability techniques
[6]-[13] have evolved to provide further improved system reliability
and may be used in addition to hardware techniques.

State-of-the-art approaches on instruction scheduling aim at im-
proving the reliability of register file (by reducing the vulnerable
intervals of different register values) or instruction queue (by reduc-
ing the residency cycles of vulnerable bits in the instruction queue
of super-scalar processors) [17][18][30]. State-of-the-art techniques
based on instruction redundancy (EDDI [11], SWIFT [10], CRAFT
[14]) provide software reliability by embedding redundant instruc-
tions, comparison instructions, and control flow checking instruc-
tions. As a result, these techniques incur a significant performance
overhead. In order to provide enhanced control flow protection,

CRAFT [14] and IVF-based [19] techniques duplicate the critical
instructions, i.e. instructions that have a relatively high probability
to lead to a software failure/crash in case of a soft error, for instance
load, store, jump, branches, calls, etc. Therefore, these techniques
incur additional >40% performance loss, increased register pressure
(i.e. more register usage), and excessive memory overhead (because
of instruction and data redundancy) [14]. Furthermore, an increased
number of critical instruction executions may lead to excessive
rollbacks during recovery because of an increased probability of
software failures and fault propagation to/from memory, when a
fault occurs in the hardware of the memory pipeline stage
[10][14][20].

Besides excessive performance overhead, one of the primary
issues of instruction redundancy and scheduling techniques
([10][11][14], [17][18][30]) is that they treat all instructions in the
same way. Their software-level reliability estimation models
(RVF: Register Vulnerability Factor1 [18] or PVF: Program Vul-
nerability Factor2 [8][9]) do not distinguish between different
types of errors in the software caused by the hardware-level faults
during the execution of different instructions that use diverse
processor components in different pipeline stages (see discussion
in Section 2.1 and 5.1). Moreover, RVF [18] and PVF [8][9] are
computed without considering the processor architecture. As a
result, software-level reliability techniques of this kind are not
very efficient. Furthermore, state-of-the-art instruction redundan-
cy and scheduling techniques do not consider other compiler stag-
es (like front-/middle-end optimizations) and their impact on the
software (data types and structures, etc.) for improving its reliabil-
ity with reduced performance overhead.

A reduced performance overhead or, alternatively, improved
reliability may be achieved by employing reliability-aware soft-
ware transformations (before the instruction-redundancy and
scheduling), which reduce the number of critical instruction ex-
ecutions and modify the instruction profile to increase the soft-
ware reliability. To employ such reliability-aware transforma-
tions, the gap between the hardware and software needs to be
bridged by quantifying the effect of hardware-level faults at the
instruction level for software-level reliability estimation, while
considering the knowledge of the processor architecture and
layout. Moreover, it is important to understand which instructions
lead to which type of error in the application software. The type
of error is dependent upon the processor component in which the
fault occurs.

1.1 Problem Statement
Traditionally, software transformations have been studied from the
perspective of performance or energy optimization [15][21]. The
goal of this work is to increase the reliability of fault-susceptible
hardware/software systems by means of reliability-aware software

1 RVF considers the register live period as a measure for the reliability.
2 PVF relates the software reliability to the bits for Architecturally Correct

Execution (ACE) in different programmer-visible architectural components
(Register File, ALU, etc.), but hides the physical components (e.g., there
are 256 physical registers, but 32 are visible to the programmer).

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10...$10.00.

237

transformations and reliability-guided compiler techniques, which
consider the spatial vulnerability (different processor components
occupy different chip area) and temporal vulnerability (different
instructions have different execution latencies, instruction depen-
dencies, and vulnerable intervals of the operand values).

In order to perform reliability-aware transformations at source-
code level, an instruction-level reliability estimation technique is
required that quantifies the effect of hardware-level faults at the
instruction level to effectively bridge the gap between hardware
and software, i.e. the software level techniques consider the
knowledge of the underlying hardware and how these faults are
manifested and propagate through the software layer.

1.2 Our Novel Contributions and Basic Idea
1) We propose an Instruction Vulnerability Index (IVI) for
software-level reliability estimation. It jointly considers the effect
of faults in different processor components (spatial) during the
execution of different instructions (temporal), types of errors,
critical instructions, and ACE analysis (i.e. the bits for Architectu-
rally Correct Execution). Based on IVI, the Function Vulnerabili-
ty Index (FVI) and Application Vulnerability Index (AVI) are
computed for a given function and application software, respec-
tively (see Section 2).

2) Exploiting the knowledge of IVI and FVI, the following two
reliability-aware software transformations are proposed that
transform the code of a given function to aim for higher reliability.

 FVI-Guided Data Type Optimization employs different data
types for a given data structure, and affects the amount of data
to be loaded from and/or stored into the memory along with in-
structions using this data (see Section 3.1).
 FVI-Guided Loop Unrolling determines an 'appropriate'
unrolling factor with minimum FVI (see Section 3.2).

3) Application Composition and Reliable Code Generation: For
a user-provided tolerable performance overhead constraint, an ap-
plication composition algorithm selects and combines various trans-
formation functions for reliable code generation (see Section 4).

Fig. 1 shows our novel contributions (dark orange boxes) in a
reliability-aware compiler.

Fig. 1 Reliability-aware compiler flow and

our novel contribution (in dark orange filled boxes)

This is the first reliability-aware compiler that employs instruc-
tion-level vulnerability quantification (considering spatial and
temporal vulnerabilities) and performs reliability-guided software
transformations to generate more reliable software code under
given set of constraints.

The approach is orthogonal to hardware-level techniques, i.e.
traditional hardware techniques may be applied in conjunction
with our approach. We believe that each abstraction layer of a
system should be involved and contribute its particular advantag-
es to design highly-reliable hardware/software systems.

2. FAULT MODEL AND SOFTWARE-
LEVEL RELIABILITY ESTIMATION
We consider single bit-flip transient faults at a given fault rate. It is
assumed that faults are evenly distributed/hit throughout the proces-
sor area. Accordingly, faults are injected in various processor com-
ponents (in different pipeline stages) according to the components’
area during the execution of different instructions. Their effect on
the software level is studied as distinct types of manifested errors
(Fig. 2). Since ECC- and parity-protected caches is a well-
established practice in various research and industrial projects (IBM
[28], AMD [29], [27]), in this work, we consider ECC-protected
instruction and data memories. However, the register file is not ECC
protected because of high area and power overhead under frequent
usage scenarios [10][11][14][18][19], thus vulnerable to transient
faults. Note, our proposed model and solution are applicable to both
protected and unprotected register files.

As discussed earlier, the motivation of this work is the observa-
tion that faults lead to distinct errors (see Fig. 2) during the execu-
tion of different instructions and different times and different con-
texts of execution. Now, we present an analysis to corroborate this
motivation and to devise a software-level reliability estimation me-
tric “Instruction Vulnerability Index (IVI)” to quantify the vulnera-
bility of different instructions.

Fig. 2 Different types of manifested errors

2.1 Analyzing the effect of faults during the
execution
Fig. 3 illustrates the distribution of different errors for Motion-
Compensated Interpolation Filter ('MC-FIR') and Discrete Cosine
Transform ('DCT') on an embedded processor subjected to a fault
rate of 50 faults/10MCycles (see discussion on fault rates and
experimental setup in Section 5). The key observations are as
follows:

a). Failures during the instruction-fetch (i.e. wrong access to in-
struction memory (IM)) and instruction-decode stages (i.e. non-
decodable instructions) occur with the same probability for all
instructions, as all instructions use instruction fetch unit and instruc-
tion decoder. For instance, if a bit flips in the opcode field of an
instruction word, this may lead to a non-decodable instruction.

b). An application/software failure ('abort', 'exception', etc.) may
occur due to a wrong branch/call, load/store from/to a wrong loca-
tion of data memory (DM), or wrong access to the IM, as a result
of bit flips in the operands containing the address. This type of
failures is typically not tolerable. In contrast, bit flips in the ope-
rands of arithmetic instructions (except address generation) may
lead to an incorrect output error that might be in a user-tolerable
range (e.g., faulty pixel distribution in videos) or bare no impact
due to control flow.

 Since the probability of failures in the instruction-fetch and
instruction-decode stages is the same for all instructions, the
key difference of processor components’ usage occur in other
pipeline stages, like execute, memory, and write-back stages.
Therefore, considering the severity of an error as a result of

238

faults in the pipeline stages (other than instruction-fetch and in-
struction-decode), we categorize load, store, jumps, branches,
calls, and address generation instructions as critical instruc-
tions, while all other (mainly arithmetic and logical) instruc-
tions are denoted as non-critical instructions. For a given fault
rate, the probability of failures is directly proportional to the
number of critical instruction executions.

c). Fig. 3 shows that in case of 'DCT', the failures for wrong store
to DM are dominant compared to that in 'MC-FIR', due to more
store instruction executions. The failures for wrong load from the
DM happen primarily due to: (i) the bit flips in the operand con-
taining the address (during the memory pipeline stage), or (ii) the
bit flips in the Address Generation Unit (AGU) during the address
computation (in the execute pipeline stage).

 Different processor components (instruction decoder, ALU,
multiplier, AGU, memory controller, etc.) in different pipeline
stages exhibit distinct area. Considering that faults are evenly
distributed/hit over the surface area, the probability of fault in a
processor component is directly proportional to its area. This is
denoted as spatial vulnerability, which is the probability of a
fault during the execution of an instruction w.r.t. to the area of
various processor components it uses.

 As discussed above, error types vary depending upon the in-
struction type and the pipeline stage in which they occur. There-
fore, in order to quantify the reliability at the instruction level,
spatial vulnerability of different instructions needs to be consi-
dered.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non‐decodable wrong load wrong store INCORRECTwrong
access
to IM

wrong
branch/
call

non‐
decod‐
able

wrong
load
from
DM

wrong
store to
DM

Inco‐
rrect
output

Discrete Cosine
Transform (DCT)

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non‐decodable wrong load wrong store INCORRECTwrong
access
to IM

wrong
branch/
call

non‐
decod‐
able

wrong
load
from
DM

wrong
store to
DM

Inco‐
rrect
output

Motion‐Compensated
Interpolation Filter (MC‐FIR)

60%

0%

30%

P
e
rc
en

ta
ge

o
f
To
ta
l

A
p
p
lic
at
io
n
O
u
tp
u
ts

Fig. 3 Analyzing the distribution of different error types

d). incorrect output errors are mostly due to bit flips (in ALU,
multiplier, etc.) occurring during the execution of arithmetic and
logical instructions in the execute pipeline stage. Even in this
case, the probability of an error in a multiplier is higher compared
to an ALU due to its increased spatial vulnerability.

e). Different instructions spend varying amount of time (in terms
of cycles) in different pipeline stages. For instance, multiply re-
quires 3 cycles, while an add instruction requires 1 cycle (using
adder in the execute stage). This is denoted as temporal vulnera-
bility, which is the probability of a fault during the execution of
an instruction w.r.t. to the time it spends in various processor
components. Furthermore, this longer execution time of instruc-
tions results in longer intervals between the variable usages
(stored in the register file), which results in an increased temporal
vulnerability of the register file. Usage of more variables results
in an increased spatial vulnerability.

f). It is important to consider that not all bits of operand variables
are vulnerable for the correct software execution due to inter-
layer masking from microarchitecture-state to the ISA-visible
state [8][9] (i.e. a fault in the hardware does not lead to an errone-
ous application/software output or user-visible error, e.g., due to
control flow or due to subsequent instructions). A bit of the cor-
rect software execution is deemed necessary for Architecturally
Correct Execution (ACE-bit). All other bits are unACE-bits. To
demonstrate, let us consider the following example.

R0 = R1 & R2; R1 = 32'bit x; R2 = 0x0000FFFF;

A fault may occur in R1 or R2, but not in both. There, a fault in the
upper 16 bits of R1 will not affect the value of R0. However, a fault
in R2 will affect the value of R0. Therefore, bits 0-15 of R1 are
ACE-bits, while bits 16-31 of R1 are unACE-bits. In contrast to this,
all 32 bits of R2 are ACE-bits. Therefore, ACE analysis is important
for devising the Instruction Vulnerability Index (IVI).

Summarizing, in order to precisely quantify the hardware-level
faults at the software level, the Instruction Vulnerability Index
(IVI) needs to jointly consider the spatial and temporal vulnerabil-
ity, critical and non-critical instructions, and the ACE analysis.

2.2 Instruction Vulnerability Index
We define the Instruction Vulnerability Index (IVI) of an instruction
'i' as its accumulated vulnerability during its execution in pipeline
stages using diverse processor components (Proc) while considering
their respective area (in terms of vulnerable gates); see Eq. 1.

ic c faultc Pr oc
i

cc Pr oc

IVI * A * P (c)
IVI

A




 


 (1)

where 'c' is a particular processor component and Ac is its area in
gate equivalents (obtained after synthesis and place & route re-
sults). Pfault(c) is the probability of a fault observed at the output
of the component 'c'. It is employed to incorporate the logical
masking effects, i.e. a transient fault in a combinational circuit is
not latched by a memory element, as the fault is blocked from
affecting the output due to a subsequent gate whose output is only
determined by its other inputs [1]. Pfault(register file) is 100%,
while in case of a combinational circuit it depends upon its micro-
architecture [1]. IVIic is the individual vulnerability of the instruc-
tion 'i' at component 'c' and it is defined as the product of BitsACE-c
(ACE-bits of a component 'c' of an architecturally-defined size
TotalBitsc in bits) and their vulnerable period (Eq. 2).

ic ACE c
ic

c
c Pr oc

Vu ln erablePeriod * Bits
IVI

TotalBits







 (2)

In case of the register file, IVIic depends upon the number of ope-
rands, and Eq. 2 can be modified accordingly (Eq. 3) to obtain IVIiReg.

op ACE opop operands
iReg

cc Pr oc

Vu lnerablePeriod * Bits
IVI

TotalBits









 (3)

Fig. 4 demonstrates a case, where two operands have different
vulnerable periods, i.e. lifetime of the operand variables in terms
of cycles. For an instruction, the vulnerable periods of its ope-
rands depend upon the latency of previously executed instructions
and instruction dependencies. For example, for the 5th instruction
at cycle#9, the vulnerable periods for R0 and R2 are 4 and 6
cycles, respectively.

Cycle # Instr. #

3 load R2

1 load R1

5 R0 = R1 + R2

6 R3 = R0 * R1

9 R4 = R0 – R2

2

1

3

4

5

R1

R2

R0

VulnerablePeriod = (Cycle of Current Usage – Last Write Cycle)
for i= 5; VulnerablePeriodR0 = 4 Cycles; VulnerablePeriodR2 = 6 Cycles

Vulnerable Period
(operand lifetime)

Fig. 4 Vulnerable periods of operands

The vulnerable period denotes the temporal vulnerability and
BitsACE-c and Ar denote the spatial vulnerability. BitsACE-c are ob-
tained by performing comprehensive software-level ACE analy-
sis. ACE analysis captures the vulnerable portion of architectural
components (without considering fault injection and the underly-

239

ing microarchitecture) by exploiting the read/write dependencies
w.r.t. the register file and instruction dependencies. The bits writ-
ten in a certain cycle but not read are denoted as UnACE-bits.

Our ACE analysis is similar to the one employed by PVF
[8][9]. However, PVF does not distinguish between different types
of errors that appear as a result of faulty ACE-bits. Therefore, our
IVI metric incorporates the ACE analysis in conjunction with the
knowledge of critical/non-critical instructions and varying proba-
bilities of failures and incorrect output in order to quantify the
vulnerability index of a function.

2.3 Function and Application Vulnerability Index
As discussed in Section 2.1, faults occurring during the execution
of critical instructions typically lead to application failures, which
are more severe compared to incorrect output (from the user pers-
pective). Therefore, the Function Vulnerability Index (FVI) is
computed as the weighted average of FVI for critical Instructions
(FVICI) and non-critical Instructions (FVInCI).

Failures i Failuresi CI

IncorrOP i IncorrOP nCIi nCI

i IncorrOP CIi CI

FVI IVI * P (FaultRate)
FVI IVI * P (FaultRate)

IVI * P (FaultRate)







 
 


(4)

Failures IncorrOP

F

* FVI * FVI
FVI

I

 



 (5)

∑IF is the number of instructions in a function 'F'. 'CI' and 'nCI'
are the critical and non-critical instructions, respectively. PFai-

lures(), PIncorrOP-CI(), and PIncorrOP-nCI(), are the probabilities for fail-
ure, incorrect output due to critical instructions, incorrect output
due to non-critical instructions, respectively, at a certain fault rate.
These probabilities can be obtained by employing fault-injection
techniques. Various fault injection techniques are available to
inject the faults on different level such as RT-level, ISS-level [24]
and software-level [22]. Fault injection analysis at RT-level
([2][23][25]) requires significant development time and a long
experimental duration (9.7 simulated instructions per second
[25]). For a complete application (like a complete H.264 video
encoder with several million instructions), it will require weeks.
Alternatively, software-level techniques [22][24] also exist for
fault injection analysis. However, these software-level techniques
do not consider the knowledge of processor layout with architec-
ture-specific details (area of different components, number and bit-
sizes of physical registers, etc.) for fault distribution and analysis.
For example, the SymPLFIED [22] approach enumerates transient
faults in registers, memory, and computation block of hardware
without considering the processor architecture and layout in their
machine model, therefore, lacks accuracy and may lead to over- or
under-estimation or may even not cover certain fault scenarios (see
Section 5.5 for accuracy comparison).

The reliability of a complete application software is quantified
using the Application Vulnerability Index (AVI); see Eq. 6.

 
 

 



 

 

f

f

numExec

fi Failures IncorrOP
f F i 0

numExec

fi
f F i 0

(T * (* FVI * FVI))
AVI

T
 (6)

where numExecf is the number of iterations of the function ‘f’ and
Tfi is the execution latency (in cycles) in its ith iteration.

Our proposed reliability-aware software transformations reduce
the FVI and AVI for a given application software by:
 lowering the PFailures(), PIncorrOP-CI(), and PIncorrOP-nCI() probabili-

ties, achieved by reducing the number of critical instruction
executions.

 lowering the IVIic, achieved by modifying the instruction pro-
file that leads to a different usage pattern of the processor
components by means of executing alternative instructions.

3. RELIABILITY-AWARE SOFTWARE
TRANSFORMATIONS
The following two reliability-aware software (source-level) trans-
formations are proposed.

1) FVI-Guided Data Type Optimization
2) FVI-Guided Loop Unrolling

3.1 FVI-Guided Data Type Optimization
Data type optimization is a method to transform the data types
with smaller bit widths (like 8-bit unsigned char) into the data
types with larger bit widths (16-bit short or 32-bit unsigned int)
for a given data structure in order to reduce the number of criti-
cal instruction executions, while minimizing the FVI.

It affects the amount of data to be loaded from and/or stored
to the memory. The input/output and the internal data structures
become distinct with different data types that impact the instruc-
tions executed, thus resulting in a different instruction histogram
compared to the original function3.

short int ref[16];
short int cand[16];
…
r00=ref[0];
r01=ref[1];
r10=cand[0];
r11=cand[1];
…
d0=r00-r10;
d1=r01-r11;
…
…

1
2
3
4
5
6
7
8
9
10
11
12

int ref[4];
int cand[4];
…
r0=ref[0]; r1=cand[0];
r00=r0&0x0000FFFF;
r01=r0>>16;
r10=r1&0x0000FFFF;
r11=r1>>16;
…
d0=r00-r10;
d1=r01-r11;
…

1
2
3
4
5
6
7
8
9
10
11
12

Transformed CodeOriginal Code

Load Load

‐

Store

Benfits: Save 2 Loads and 1 Store

x11x01

Extraction
Code

d01

Load Load

‐

Store

x10x00

d00

Load

x00x01

&

0x0000FFFF

>>16

‐

Load

x10x11

>>16&

‐

… … …

<<16
||

d0d1

StoreRe‐Merging
Code

Data Structures
in Memory

…

Performance
Overhead

Performance Overhead: 3 Shifts, 3
Logical instructions due to
extraction and re‐merging code

Fig. 5 (a) Example code showing data type optimization trans-

formation, (b) Corresponding data flow graphs

Fig. 5 shows an example with original and transformed codes along
with their data flow graphs. The original code executes 2x more
load/store instructions due to 16-bit data loading into one 32-bit
variable (stored in the register file) at a time; see left-side graph in
Fig. 5b. In contrast, in the transformed code, two 16-bit data values
are loaded into a 32-bit variable in a packed format; right-side graph
in Fig. 5b illustrates two loads from two different arrays. The re-
duced number of executions of load/store instructions results in a
lower probability for failures, as discussed in Section 2. Moreover,
when using instruction redundancy for fault detection to achieve
higher reliability, the incurred performance penalty is lower after
deploying the ‘data type optimization’ transformation.

3 In case data types of the input and output parameters are changed, a

modification in the function interface is required.

240

However, this transformation comes with certain side-effects, as
shown by the additional extraction and merging code in Fig. 5b (hig-
hlighted by dashed boxes), which is required to unpack and repack the
data values when using a 32-bit RISC processor. Since after unpacking
the data, variables and instructions are still in 32-bit format, the over-
flow of signed values is avoided. Additional instructions for packing
and unpacking of data incur a performance penalty in addition to a
relatively higher IVI for ALU. Therefore, this overhead needs to be
amortized by the IVI reduction due to reduced number of executions of
load and store instructions. Load instructions may incur stalls due to
cache misses. Therefore, a reduced number of load instruction execu-
tions may even amortize the performance overhead of additional extrac-
tion and merging code. Still the merging algorithm considers a tolerable
performance overhead. Note, in case of VLIW architectures, this trans-
formation may even be better due to the availability of SIMD instruc-
tions.

When using data types with even smaller bit-widths, like unsigned
char (8-bit, typical in image and video processing applications), the
critical instruction executions can be further reduced to lower the prob-
ability of failures. However, it might incur a significant performance
overhead and code size expansion due to the excessive extraction and
merging code for packing/unpacking of data. That is why we propose
an algorithm that performs data type optimization for load/store instruc-
tions under the constraint of a given tolerable performance overhead
(Pτ).

1. Input: G (V, E), Pτ, FVIOrig, POrig, DataType

2. Output: Transformed Function fd // with reduced FVIfailuers

3. BEGIN

4. A  getAllArrays(G);

5. For all a Є A
6. list<V> L  getLoads(a, G);

7. If (DType= INT)Then

8. continue;

9. FVIBest  FVIOrig;

10. While L != Ø {
11. G'  G
12. (l1,l2)  GetCurrent&NextLoads(L) ;

13. l  Merge(l1,l2);

14. G' .Remove(l1,l2); G' .Insert(l); G' .InsertExtract ionCode();
15. (FVI, P, Spill)  Evaluate(G'); // Compile and Execute,

 and estimate FVI, performance, and check for spilling

16. If ((P/POrig – 1)> Pτ) Then break;

17. If ((FVI < FVIBest) & (!Spill)) Then

18. FVIBest  FVI; L .Remove(l1,l2);

19. G .Remove(l1,l2); G .Insert(l);
20. G .InsertExtract ionCode();
21. End If

22. End While

23. End For
24. fd  G;

25. return fd;
26. END

Fig. 6 Algorithm for FVI-guided data type optimization

Fig. 6 presents the pseudo-code for data type optimizations target-
ing load merging (for store instructions, the procedure is similar).
 Input: Graph G (V, E) of the function F, Pτ as the tolerable
performance overhead, Data Type, FVI and performance of the
original code (FVIOrig, POrig),
 Output: Transformed function fd with merged loads and ex-
traction code as a result of the data type optimization

First, all arrays A are extracted from the graph G (line 4). Then,
for each array a Є A, a list L of all load vertices is obtained from

the input graph (line 6). If the data type is integer (32-bit), no
merging is performed for array a (line 7). Otherwise, the algo-
rithm iterates until all load vertices are evaluated (lines 10-22).
First a temporary copy G' of the graph G is created (line 11). Then,
two consecutive load vertices are extracted from the load list and
merged (line 12, 13). These load vertices are removed from the
temporary graph G' and the merged load vertex is inserted along
with the extraction code (line 14). Afterwards, the temporary
graph G' is compiled and simulated to estimate the performance
and reliability (FVI) in line 15. In case the performance loss is
greater than the tolerable performance, the algorithm returns the
currently best Graph (line 16, 24). Otherwise, the FVI is com-
pared to the currently best FVI (line 17). In case of a better solu-
tion, the vertices under evaluation are removed from the original
graph G and the merged load vertex is inserted along with the
extraction code (lines 18-20).

This algorithm only merges two load vertices in each itera-
tion. Therefore, when optimizing from 8-bit to 32-bit data types, it
is invoked two times.

3.2 FVI-Guided Loop Unrolling
Loop unrolling is a method to expand/unroll source code loops by
determining an appropriate unrolling factor (among several un-
rolling options) such that the Function Vulnerability Index (FVI)
is minimized, while reducing the number of critical instruction
executions.

The unrolling factor is defined as the number of loop body
replications after unrolling. Loop unrolling techniques have been
extensively explored for improving the performance and power
consumption while considering side effects like increased soft-
ware code size, instruction cache overflow, register spilling, etc.
[15][16]. However, loop unrolling has not yet been well explored
from the reliability perspective.

On one hand loop unrolling has an impact on the reduced number
of critical instruction executions such as load/store and branches.
On the other hand it may result in an increased FVI due to,
a) increased variable lifetime via engaging the same register for

storing this variable for a longer time. The variables of the un-
rolled code are typically kept for a relatively longer time in-
side the registers until the relevant instructions are executed.
Therefore, it increases the temporal vulnerability of variables
stored in the register file. This effect can be seen in the exam-
ple of Fig. 7 where the vulnerable period of variable y[2] has
been significantly increased. In contrast, the original code rel-
oads y[2], thus reducing the vulnerable period.

b) increased spatial vulnerability as more registers are required
for storing live variables; Fig. 7 shows that more y[i] data val-
ues are alive, thus requiring more registers.

x[1]= y[0]+y[1]+y[2];
…
…
y[1]= y[1]…
x[2]= y[1]+y[2]+y[3];
…
…
y[2]= y[2]…
…
}

for(i=1;i<20;i++)
{
x[i]= y[i-1]+y[i]+y[i+1];
…
…
y[i]= y[i]+…

}

Original Code Transformed Code

Variable y[2]
has longer
vulnerable
period, i.e.,

longer
lifetime

Fig. 7 Example code shows the increased temporal

vulnerability of variables as a consequence of loop unrolling

The challenge in this case is to determine an appropriate unrol-
ling factor which is guided by the Function Vulnerability Index
(FVI) to jointly optimize for reliability and performance, while
considering the relative increase in the code size.

241

We cope with these reliability-related concerns of loop unrol-
ling by means of our FVI-guided Loop Unroller that determines –
for each given loop l of a function F – an appropriate unrolling
factor by minimizing the:

a) Function Vulnerability Index (FVI), considering utilization of
different processor components by different instructions, and

b) Performance loss compared to the maximum achievable per-
formance when using a performance-based unrolling,

while avoiding the spilling and incurring a relatively small in-
crease in code size (i.e. number of assembler instructions). Our
FVI-guided Loop Unroller discards the unrolling factors that
cause register spilling4 (as a consequence of excessive loop unrol-
ling), as it may incur additional critical instructions such as store
and then load (thus, an increased probability for failures, as dis-
cussed in Section 2) due to the spill code. The goal is to maximize
the following profit function (Eq. 7).

Orig Orig

Orig

(FVI / FVI) (P / P)
Profit

(C / C)




 



 (7)

(FVIOrig, POrig, COrig) and (FVI, P, and C) denote the FVI, perfor-
mance, and code size (number of assembler instructions) of the
original code (i.e. performance-optimized) and the transformed
code, respectively. The parameter µ activates or deactivates the
normalization effect due to code expansion. In case the instruction
cache is protected by ECC or parity ([2][18][27]), µ is set to be
COrig/C, otherwise, it is set to be one (i.e. the case of unprotected
instruction cache). The optional parameter γ scales up the impor-
tance of reliability.

3.2.1 Algorithm of our FVI-Guided Loop Unroller
The proposed FVI-guided Loop Unroller (Fig. 8) requires the loop
iteration counts. This is known for fixed-sized and input-invariant
loops and unknown for variable-sized loops where the loop itera-
tions depend on a variable’s value that may change at run time de-
pending upon the input data5. For each loop of a given function, the
maximum unrolling factor (maxUnrollFactor) is then determined as
the Greatest Common Divisor of all the corresponding loop itera-
tions due to profiling for varying input data.

A set of maxUnrollFactors for all loops of a function F is then
forwarded as an input to our FVI-guided Loop Unroller. Further
input parameters are the FVI, performance, and code size of the
original function F (FVIOrig, POrig, and COrig), i.e. with performance-
optimized compilation (line 1). Similar to various state-of-the-art
loop unrolling approaches (like [15]), this information is computed
at the assembly level and made accessible at the source code level
through back-annotation. The output is the transformed function fd
with loop unrolling applied by an FVI-minimizing unrolling factor.

Fig. 8 shows the pseudo-code of the implemented FVI-guided
Loop Unroller. First, all loops are extracted from F and stored in a
list L (line 4). Afterwards, all loops of the function F are
processed and an appropriate unrolling factor is determined (lines
5-21). For each loop l, the corresponding maximum unrolling
factor maxUF is extracted from the input set maxUnrollFactors
(line 6). Then, for each loop l, the proposed algorithm computes
the profit (Eq. 7, line 15)6 for all possible unrolling factors from 1
to the corresponding maxUnrollFactors (line 8). A copy of the

4 Note, in embedded processors, the number of physical registers is typi-

cally much less compared to high-end microprocessors.
5 Identifying fixed loops and variable loops is out of the scope of this

paper; see [15] for further details on such a static loop analysis.
6 As discussed in Section 2, we consider protected cache and memory.

loop l is created as ltemp, which is then evaluated for loop unrolling
without affecting the original code (line 9). After unrolling the
loop ltemp (line 10), the function is compiled and simulated to
compute the FVI, performance P, code size C (line 11). For FVI
estimation, our reliability-aware compiler has access to the archi-
tectural features (number and bit-width of registers, ALU, Instruc-
tion Word with operands and opcodes, etc.) and their usage pro-
files/lifetime from simulation (see Section 5.1 for the simulation
details). Furthermore, the spilling condition is also checked.

1. Input: Function F, Set of maxUnrollFactors, FVIOrig, POrig, COrig, γ, µ
2. Output: Transformed Function fd // with FVI‐guided loop unrolling

3. BEGIN

4. list<Loop> L  getLoops(F);

5. For all l Є L{ // determine FVI‐guided unrolling factor for each loop

6. maxUF = getFactor(l, maxUnrollFactors);

7. unRollProfitBest  maxINT; uFBest  1;
8. For uFi = 1 to maxUF{

9. ltemp  l; // create a temporary copy of the loop

10. FuFi  Unroll(F, ltemp, uFi); // Unroll by factor uFi

11. (FVI, P, C, Spill)  Evaluate(FuFi); // Compile and Execute, and

 estimate FVI, performance, code size, and check for spilling

12. Benefit_FVI  FVI / FVIOrig; // FVI Improvement

13. Loss_P  P / POrig; // Performance Loss

14. Loss_C  C / COrig; // Code Size Increase

15. unRollProfit = computeProf it(Benefit_FVI, Loss_P, Loss_C, γ, µ);
 // Eq. 7

16. If ((unRollProfit > unRollProfitBest) & (!Spill)) Then

17. unRollProfitBest  unRollProfit; uFBest  uFi;

18. End If

19. End For

20. setBestUnrollFactor(l, uFBest);

21. End For

22. // generate the transformed funct ion using the best unroll factors

23. For all l Є L{

24. UFBest = getBestUnrollFactor(l);
25. fd  unRoll (fd, l, UFBest);

26. End For
27. return fd;
28. END

Fig. 8 Algorithm for FVI-guided loop unrolling

The FVI reduction, performance loss, and code expansion are com-
puted and forwarded as an input for the profit calculation (lines 12-
14). In case the profit of unrolling the loop l (unRollProfit) is more
than the current best profit (unRollProfitBest) and in case there is no
spilling, the current unrolling factor is set as the best unrolling factor
(uFBest) and the best profit
(unRollProfitBest) is updated accordingly. This ensures that – for a
given loop l – only that unrolling factor will be selected that pro-
vides maximal FVI reduction while incurring relatively small per-
formance loss and code-size increase. As discussed earlier, our ap-
proach discards the spilling cases as the spill code increases the
number of critical instruction executions which lead to a higher
susceptibility of the application software towards failures. After all
the unrolling factors (till maxUF) are evaluated, the FVI-guided best
unrolling factor for the loop l is set and the next loop is evaluated.

Once the FVI-guided best unrolling factors for all loops are de-
termined, the transformed function fd is generated by unrolling all
of its loops by their calculated best unrolling factors (lines 22-26). In
case of nested loops, the transformed function fd is processing itera-
tively to generate another transformed function fd2.

Functions with different software transformations applied ex-
hibit different performance and reliability values (FVI, FVIFailure,

242

FVIIncorrOP; see Section 2) due to their distinct instruction profiles
that use the underlying processor components in diverse ways
These transformed functions are then forwarded to an application
composition algorithm that selects and combines (links) various
transformed functions.

4. APPLICATION COMPOSITION AND
RELIABLE CODE GENERATION
In the following, we explain the algorithm for composing an
application binary using the above-discussed transformations.

Input: an application software is composed of n kernel functions,
where each function undergoes different reliability-aware
transformations (Section 3) to obtain a set of transformed functions
Fi.

A = {F1, F2, …, Fn}, Fi = {fd1, fd2, …, fdm}
Each fdij transformed function represents a tuple with certain
properties {nij, FVIij, {FVIk}ij, Pij}, where nij, FVIij, Pij are the
numbers of assembly instructions, Function Vulnerability Index
(FVI, see Section 2), and latency (cycles) of the fdij transformed
function, respectively. {FVIk}ij is the set of separate FVIs for failures
and incorrect output (i.e. FVIFailure, FVIIncorrOP) at a given fault rate.

Output: C as a set of chosen transformed functions of an
application software

Constraint: user-given tolerable performance overhead (Pτ) and
tolerable code expansion (Cτ);

i i i 1fd fd fd Maxi C i C(P P) / P 1 P     (8)

i i i 1fd fd fd Origi C i C(C C) / C 1 C     (9)

PMax is the execution time of the application software with
performance-optimized compilation,

ifdi C P and

ifdi C C are the total execution time and total code size (in
number of assembly instructions) of all chosen transformed
functions, respectively. The terms

i i 1fd fdi C P  and

i i 1fd fdi C C  denote the execution time and size of the
sequential code between fdi and fdi+1, i.e. between two
consecutive transformed functions. We only consider the kernel
functions and not the concatenated calling functions. For each
kernel function, only one transformed function (with a certain
reliability-aware software transformation) is chosen in a valid
solution. The goal of the algorithm is to determine a valid solution
that meets the constraints of Eqs. 8 and 9, while minimizing the
following optimization goal of Eq. 10.

Optimization Goal: minimize the AVI (Eq. 6); see Eq. 10.

fdi

fdi

numExec

fdij i Failures i IncorrOP
i C j 0

numExec

fdij
i C j 0

(T *(* fd .FVI * fd .FVI))
min

T

 
 

 

   
 
   
 

(10)

Selection Algorithm: It is a compile-time selection problem that
can be solved optimally using a branch and bound algorithm or
sub-optimally using a heuristic. Since the search space in our case
is small (e.g., less than 20 kernel functions for a complex H.264
video encoder application), we employ a branch and bound
algorithm to traverse the overall design space.

5. EVALUATION AND RESULTS
5.1 Experimental Setup
Fig. 9 shows our reliability analysis and estimation, and simula-
tion framework based on an Instruction Set Simulator (ISS); see
experimental setup in Table I. A fault rate (in #faults/10MCycles)
is computed from the neutron flux (determined using the geo-

graphical location and altitude where the device will be used [26])
and fault probability, processor layout, and the processor frequen-
cy. We used 10, 50, and 100 faults/10MCycles, which conforms
to the test conditions opted by prominent related work [12][32]
and as such eases comparison.

Fig. 9 ISS-based reliability analysis and estimation framework

with integrated processor-aware fault injection

A fault generator that generates different fault scenarios consider-
ing fault models, fault rates, and faults in different processor
components (e.g., register file, PC, Instruction Word (IW), ALU,
Multiplier, etc.) is employed. The number of injected faults per
component is determined by the component area (in gate equiva-
lents, or percentage of total processor area, which is obtained after
RTL synthesis and place & route results) in order to incorporate
spatial vulnerability. For example, more faults are injected in a
multiplier/divider compared to the ALU according to the areas
these components occupy on the chip.

Table I: Different parameters for fault generator

Parameter Description Proper-
ties/Values

Distribution Distribution models for fault generation random

Bit Flips Min/Max number of bits flipped 1/1, 1/2, …

Fault
Probability

Probability that strike becomes a fault [1] 10%-100%

Fault
Location

List of target processor components Register file,
PC, IW, etc.

Processor
Layout/Area

Size of the complete target device in gate
equivalents
or mm² [27]

Component
Area

Area of different processor components
given as percentage of processor area

0%-100%

Place and
Altitude

City and altitude at which the device is
used to determine the flux rate (NFlux)

Oslo, 1- 20km

Frequency Operating frequency of the processor 50, 100 MHz

The faults in various processor components are modeled at the
ISS level considering the spatial and temporal vulnerabilities.
Fig. 10 demonstrates the spatial and temporal vulnerabilities of
Add, Multiply, and Load instructions in different pipeline stages,
using an abstract 5-stage integer unit pipeline of the Leon 2 pro-
cessor, where the used components are denoted as (light blue)
filled boxes. It is noteworthy that Add and Multiply instructions
are not vulnerable in the memory stage. In contrast, a load instruc-
tion is vulnerable in the memory stage, too. The vulnerability of
load/store instructions in the execute stage is primarily due to the
address calculation. Fig. 10 illustrates that the spatial vulnerability
of the load instruction is higher compared to the add instruction
due to the usage of more processor components. Furthermore, the
probability of injecting a fault during the multiply instruction is
higher compared to that in ALU due to the higher temporal vulne-
rability of a multiplier (due to longer execution).

Considering this notion of spatial and temporal vulnerability,
the faults and their impacts in different processor components are
modeled at the ISS level (see detailed modeling procedure in
Table II). For example, a fault in the instruction decoder or in the
instruction word is modeled as corrupting one/multiple fields of
the instruction word in the ISS that results in a wrong opcode or

243

wrong operand. Furthermore, a fault in the data bus or in the
cache/memory controller has the same effect from the software
perspective as it manifests as a wrongly loaded value. In the regis-
ter file, the fault is retained until it is overwritten.

Following the modeling procedure, the fault injection engine then
injects the faults during the execution of the application software.
Note, if a fault is injected into the multiplier while an add instruc-
tion is being executed, it will have no effect on the application
software output. A target processor component for fault injection
is randomly selected.

Instruction

Data
Cache/
Memory

(DM)

R
e
gi
st
er

Fi
le Integer Unit

(Pipeline, ALU,
Mul/Div)

Floating
Point Unit

Cache/
Memory
(IM)

• FE: Instruction is fetched from Instruction Cache
• DE: Instruction is decoded and operands are read

from register file
• EX: Instruction is executed (1 cycle for add, 3 cycles

for mult), address is generated for memory
instructions

• ME: Access to data cache (2 cycles) for memory
instructions

• WE: Data is written back to register file

Fig. 10 Spatial and temporal vulnerabilities: different instruc-
tions using diverse processor components (with distinct area,

see layout of Leon 2 [27]) in pipeline stages

In order to provide a fair comparison, the original code is used with
all basic compiler optimizations. The tolerable performance over-
head (Pτ) and tolerable code expansion (Cτ) are given as 5%. For
evaluation, we have benchmarked an entire H.264 video encoder
[31] as it exhibits various compute-intensive functional blocks (e.g.,
'SAD', 'SATD', 'DCT', 'HT', 'MC-FIR', 'IPRED') with diverse com-
putational properties, thus providing a representative challenge.

5.2 Discussion on Transformation Results
Fig. 11 compares the error distribution of a performance-
optimized and our reliability optimized functions for three
different fault rates. Significant improvements are observed for
'DCT', 'HT', 'MC-FIR', 'IPRED', and 'SATD' because of
considerable reductions in the number of critical instruction
executions and vulnerable periods (>20x). This effect is also
visible in Fig. 12 in terms of up to 92% (on average 64%)
reduction in FVI. For 'SAD', the benefit of 50% reduced critical
instruction executions is balanced by 9% increased arithmetic
instructions, that lead to an increased number of failures due to
'non-decodable' instructions as a result of an increased
vulnerability of instructions in the instruction-decode stage.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TEST_A COREOPT_A TEST_A OPT_A VERSION_3C VERSION_2I VERSION_1C VERSION_2I VERSION_B VERSION_A TEST_A COREOPT_AI

DCT DCT HT4x4 HT4x4 MCHZ MCHZ IPredHDC IPredHDC SAD SAD SATD SATD

100%

80%

40%

60%

20%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TEST_A COREOPT_A TEST_A OPT_A VERSION_3C VERSION_2I VERSION_1C VERSION_2I VERSION_B VERSION_A TEST_A COREOPT_AI

DCT DCT HT4x4 HT4x4 MCHZ MCHZ IPredHDC IPredHDC SAD SAD SATD SATD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TEST_A COREOPT_A TEST_A OPT_A VERSION_3C VERSION_2I VERSION_1C VERSION_2I VERSION_B VERSION_A TEST_A COREOPT_AI

DCT DCT HT4x4 HT4x4 MCHZ MCHZ IPredHDC IPredHDC SAD SAD SATD SATD

100%

80%

40%

60%

20%

0%

Application Failure Output Incorrect Output Correct

DCT HT MC‐FIR IPRED SAD SATD

Performance‐Optimized

Application Failure Output Incorrect Output CorrectOur transformations

100%

80%

40%

60%

20%

0%

0%

1
0
0
 f
 /
 1
0
 M

C
yc
le
s

5
0
 f
 /
 1
0
 M

C
yc
le
s

1
0
 f
 /
 1
0
 M

C
yc
le
s

Fig. 11 Comparing the error distribution of performance-

optimized and our reliability-optimized functions

The detailed error distribution in Fig. 13 shows that the major
reduction in application failures for 'SATD' comes from the reduced
number of 'wrong load from DM' and 'wrong store to DM' failures.
The 'Incorrect Output' cases are reduced due to reduced
vulnerability of an ALU and reduction in the vulnerable periods.

Fig. 11 shows that our transformations provide on average
63.8%, 81.9%, and 67.8% reduced application failures for 10, 50,

Processor Components Area (Leon 2) [27] Fault Symptom Modeling Procedure Fault Impact
Instruction Fetch & Decode +
Instruction Word (IW),
(Sparcv8, 5-stage pipeline)

Pipeline and
Integer Unit
(0.86 mm²)

Floating Point
Unit (0.86 mm²)

one/multiple
fields of an in-
struction word
are corrupted

opcode field(s) is corrupted wrong instruction is executed, instruction format
is changed, instruction is not decodable

source/destination register field(s)
is corrupted

data is fetched from/written to wrong register(s)

immediate value is corrupted wrong input value for calculation
Program Counter (PC),
Next Program Counter (NPC)

wrong
instruction(s) are
executed

PC is corrupted single instruction is fetched from the wrong loca-
tion/no access to the designated region

NPC is corrupted multiple instructions are fetched from the wrong
location/no access to the designated region

Integer Execution Unit (IEU)
and Floating Point Unit (FPU)

result of the
Execution units
are corrupted

sources (input values) of the Ex-
ecution Units are corrupted

wrong result because of incorrect source register
content/wrong computation

destination (output value) of the
Execution Units is corrupted

wrong result because of incorrect destination
register content/wrong computation

Register File
(windowed, 264x32 bit)

0.19 mm² data in the
register file is
corrupted

register in current window is
corrupted

wrong content is fetched if window does not
move, corrupting source operands

register not in current window is
corrupted

wrong content is fetched when window is moved,
corrupting source operands

Instruction Memory (IM) +
Data Memory (DM), 16 Kbyte

2.59 mm² data in the caches
is corrupted

corrupted data load instruction fetches incorrect content
corrupted instruction same impact as fault in IW

Others (peripheral units, …) 0.45 mm² not simulated

Table II: Modeling faults in different processor components at the ISS-level; as an example for the case of Leon 2

244

100 faults/10MCycles, respectively. Furthermore, our
transformations provide on average 43.7%, 16.2%, and -38.6%
reduced (negative value denotes an increase) incorrect output for 10,
50, 100 faults/10MCycles, respectively. Note, the percentage of
incorrect output is increasing when using our transformations at
higher fault rates. This is due to the fact that our transformations
prioritize reducing the application failures that are not tolerable. To
further increase the reliability, instruction redundancy techniques
may be deployed. In the following, we will demonstrate the benefit
of our transformations when employed in conjunction with state-of-
the-art instruction redundancy techniques, i.e. EDDI [11], SWIFT
[10], CRAFT [14].

0

10

20

30

40

50

60

70

80

90

100100

60

80

0

P
er
ce
n
ta
ge
 F
V
I

R
ed

u
ct
io
n
 [
%
]

DCT HT MC‐FIR IPRED SAD SATD

40

20

Fig. 12 FVI reductions of our reliability-optimized functions

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non‐decodable wrong load wrong store INCORRECTwrong
access
to IM

wrong
branch/
call

non‐
decod‐
able

wrong
load
from
DM

wrong
store to
DM

Inco‐
rrect
output

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non‐decodable wrong load wrong store INCORRECTwrong
access
to IM

wrong
branch/
call

non‐
decod‐
able

wrong
load
from
DM

wrong
store to
DM

Inco‐
rrect
output

'SATD' Performance‐Optimized
60%

0%

30%

P
e
rc
e
n
ta
ge

o
f
To
ta
l

A
p
p
lic
at
io
n
O
u
tp
u
ts

'SATD' With Our Transformations

Fig. 13 Comparing the distribution of different error types for
performance-optimized and our reliability-optimized SATD

5.3 Applying our Transformations with
Instruction-Redundancy Techniques
State-of-the-art instruction-redundancy schemes protect critical
instructions and control flow (like load, store, jump/branches,
etc.) using several additional compare and branch instructions in
the original code. Our proposed transformations aim at reducing
the number of critical instruction executions, thus reducing the
overhead of additional instructions for protection.

0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A
0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A

0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A

0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A

4

3

0

P
e
rf
o
rm

an
ce
 (
N
o
rm

al
iz
e
d

to
 t
h
e
P
e
rf
o
rm

an
ce
‐

O
p
ti
m
iz
e
d
C
o
d
e
)
[x
]

SA
TD

IP
R
ED

M
C
‐F
IRH
T

D
C
T

2

SA
D

SA
TD

IP
R
ED

M
C
‐F
IRH
T

D
C
T

SA
D

EDDI [11] EDDI_ECC_CFE [10]

4

3

0

SA
TD

IP
R
ED

M
C
‐F
IRH
T

D
C
T

2

SA
D

SA
TD

IP
R
ED

M
C
‐F
IRH
T

D
C
T

SA
D

SWIFT [10] CRAFT [14]

Without our transformations With our transformations

1

1

P
er
fo
rm

an
ce
 (
N
o
rm

al
iz
e
d

to
 t
h
e
P
er
fo
rm

an
ce
‐

O
p
ti
m
iz
ed

C
o
d
e
)
[x
]

Fig. 14 Comparing instruction-redundancy techniques with and

without our proposed software transformations

Fig. 14 shows the performance of instruction redundancy tech-
niques with and without our transformations normalized to the
performance-optimized code. It demonstrates that employing our
transformations in conjunction with state-of-the-art instruction-

redundancy based techniques (EDDI [11], SWIFT [10], CRAFT
[14]) provides up to 39.5% (average 21.8%) lower performance
penalty compared to when not applying our transformations. One
of the primary reasons for this reduced penalty is the reduction in
branches and store instructions that are used as synchronization
points for inserting the check instructions in SWIFT [10] and
CRAFT [14]. In application softwares with extensive load/store
instructions (like DCT, IPRED, SATD, and MC-FIR), instruction
redundancy techniques with our transformations incur significant-
ly reduced performance overhead compared to instruction redun-
dancy without our transformations. Note, this paper does not in-
troduce any new instruction redundancy technique; rather we
demonstrate how our transformations may help in reducing the
performance penalty of existing instruction redundancy tech-
niques (like SWIFT [10], CRAFT [14]).

5.4 Discussion on Loop Unrolling Factors
Fig. 15 presents the detailed evaluation of our FVI-guided Loop
Unroller showing different unrolling possibilities and the FVI-
aware selected unrolling factor for the 'SATD' function. Fig. 15
shows that the IVI for register file in case of the unrolling factor 8
(FDLU8) is increased by 45% (5.63%  8.20%) compared to IVI
of the unrolling factor 4 (FDLU4), which is mainly due to the usage
of 11 more registers (31 vs. 20). Due to the complete unrolling,
there are no loop test (jump/branch) instructions in FDLU8. How-
ever, the sequence of consecutive arithmetic instructions results in
an increased IVI for the ALU. Moreover, since almost all the
instructions are arithmetic instructions, ALU is vulnerable all the
time.

0

50

100

150

200

250

TEST_A(O1) REF_AI(O1) REF_BI(O1) COREOPT_AI(O1)

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

0

500

1000

1500

2000

2500

TEST_A(O1) REF_AI(O1) REF_BI(O1) COREOPT_AI(O1)

2500

0

500

1000

1500

2000

9%

6%

3%

P
e
rf
o
rm

a
n
ce
 [
C
yc
le
s]

0%

P
e
rf
.O
p
t

FD
LU

2

FD
LU

4

FD
LU

8

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%100%

60%

20%
0%

P
e
rf
.O
p
t

FD
LU

2

FD
LU

4

FD
LU

8

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%60%

40%

0%

P
e
rf
.O
p
t

FD
LU

2

FD
LU

4

FD
LU

8

20% 40%

80%

Perf.Opt FDLU2 FDLU4 FDLU8

250

0

50

100

150

200

Perf.Opt FDLU2 FDLU4 FDLU8

co
d
e
 s
iz
e
 [
#
 in
st
r.
] 250%

0%

50%

100%

150%

200%

si
ze
 v
a
ri
a
ti
o
n
 [
%
]

IV
I_
R
e
g
is
te
r
Fi
le
 [
%
]

IV
I_
C
a
ch
e
C
o
n
tr
o
ll
e
r

[%
]

IV
I_
A
LU

 [
%
]

instructions in binary
size relative to original

cycles
instructions executed

Fig. 15 Effect of loop unrolling on reliability and performance

Although FDLU8 improves the performance from 427 cycles to
231 compared to FDLU4, there is a significant increase in the IVI
for the ALU and register file components (exhibit higher spatial
vulnerability compared to the cache controller), which leads to a
relatively lower reliability. Therefore, our FVI-guided Loop Un-
roller chooses 4 as reliability-wise better unrolling factor the
'SATD' function, which provides 45% IVI reduction at the cost of
1.8x performance loss.

5.5 Evaluation of Simulation-/Compilation-
Times and Reliability Estimation Accuracy
The reliability analysis and estimation was performed using a 24-
core (2.4 GHz) Opteron processor 8431 with 64 GB memory. The
average runtime of our reliability analysis and simulation is
72x103 SIPS (simulated instructions per second) with extensive
error logging (40MB/MCycles). The simulation runtime of a
state-of-the-art software-level reliability analysis technique
SymPLFIED [22] is 15.2 SIPS. It shows that our methodology
provides significant simulation runtime improvement (>4K times)
compared to SymPLFIED [22], which is mainly due to the exten-
sive model computation in SymPLFIED.

245

Fig. 16 illustrates the comparison of our reliability estimation
accuracy with SymPLFIED [22]. In case of SymPLFIED, the
number of application software crashes due to wrong access to
Instruction Memory increases significantly. This is due to an in-
creased number of faults in the PC. The main reason is the ignor-
ance of processor layout with several architecture-specific fea-
tures in SymPLFIED’s machine model. Therefore, the percentage
fault in PC increases from 0.1% to 7.1%, which leads to an aver-
age 27% over-estimation of application failures (for
100f/10MCycles). The comparison in Fig. 16 demonstrates that
when using the SymPLFIED technique, the probabilities for fail-
ure and incorrect output are over-estimated, which lead to an in-
accurate FVI estimation (see Section 2). It thereby demonstrates
the improved accuracy of our reliability analysis.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

100

80

60

40

20

0

A
D
P
C
M

A
ES

C
R
C

D
C
T

SA
D

SH
A

Su
sa
n
C

Su
sa
n
S

50 f / 10 MCycles

100

80

60

40

20

0

Output Correct Output Incorrect Application Failure

A
D
P
C
M

A
ES

C
R
C

D
C
T

SA
D

SH
A

Su
sa
n
C

Su
sa
n
S

10 f / 10 MCycles

using SymPLFIED [22] without the
knowledge of the processor layout

using our Methodology with the
knowledge of the processor layout

Er
ro
r
D
is
tr
ib
u
ti
o
n
 [
%
]

Er
ro
r
D
is
tr
ib
u
ti
o
n
 [
%
]

Fig. 16 Detailed error characterization in different

applications using our methodology and SymPLFIED [22]

Compared to the performance-optimized compilation, our metho-
dology for reliability-aware compilation suffers from a significant
compilation-time overhead due to reliability analysis and estima-
tion (which is still >4K times faster compared to state-of-the-art)
and iterative evaluations. It instigates the need to explore intelli-
gent reliability-aware Back-Annotation techniques.

6. CONCLUSION
A novel compilation technique for reliability-aware software
transformations is proposed along with an instruction-level vulne-
rability estimation method. Compared to performance-optimized
compilation, our new compilation technique incurs 60%-80%
lower application failures, averaged over various fault injection
scenarios and fault rates, while reducing an application’s vulnera-
bility by avg. 64% compared to performance-optimized compila-
tion.

Our work demonstrates that software-level techniques can
significantly contribute towards reliable hardware/software sys-
tems. We believe that both software and hardware abstraction
layers of a system should be involved and contribute its particular
advantages towards highly-reliable hardware/software systems.

7. REFERENCES
[1] R. Baumann, “Radiation-induced soft errors in advanced semi-

conductor technologies,” IEEE TDMR, vol. 5, no. 3, pp. 305-
316, 2005.

[2] P. Giacinto et al., “An experimental Study of Soft Error in Mi-
croprocessors”, MICRO, pp. 30-39, 2005.

[3] R. Vadlamani et al.,"Multicore soft error rate stabilization using
adaptive dual modular redundancy", DATE, pp. 27-32, 2010.

[4] D. Ernst et al., “Razor: circuit-level correction of timing errors
for low-power operation,” IEEE MICRO, vol. 24, no. 3, pp. 10-
20, 2004.

[5] S. S. Mukherjee, et al., “A systematic methodology to compute
the architectural vulnerability factors for a high-performance
microprocessor", MICRO, pp. 29-40, 2003.

[6] R. Venkatasubramanianw et al., “Low cost on-line fault detec-
tion using control flow assertions”. IEEE IOLTS, pp.137–143,
2003.

[7] P. P. Shirvani et al., “Software implemented EDAC protection
against SEUs”. IEEE Transactions on Reliability, vol. 49, pp.
273–284, 2000.

[8] V. Sridharan, “Introducing Abstraction to Vulnerability Analy-
sis”, Ph.D. Thesis, March 2010.

[9] V. Sridharan et al., “Eliminating Micro-architectural Depen-
dency from Architectural Vulnerability”, HPCA, pp. 117-128,
2009.

[10] G. A. Reis et al., “SWIFT: Software Implemented Fault Toler-
ance”, IEEE CGO, pp. 243-254, 2005.

[11] N. Oh et al., “Error detection by duplicated instructions in su-
per-scalar processors”, IEEE Transaction on Reliability, vol.
51, no. 1, pp. 63-75, 2002.

[12] J. Hu et al., “In-Register Duplication: Exploiting Narrow-Width
Value for Improving Register File Reliability,” DSN, pp. 281-
290, 2006.

[13] J. S. Hu et al., “Compiler-Directed Instruction Duplication for
Soft Error Detection,” DATE, vol.2, pp. 1056-1057, 2005

[14] G. A. Reis et al., “Software controlled fault tolerance,” ACM
TACO, vol. 2, pp. 366-396, 2005.

[15] P. Lokuciejewski et al., “Combining Worst-Case Timing Mod-
els, Loop Unrolling, and Static Loop Analysis for WCET Mi-
nimization,” ECRTS, pp. 35-44, 2009.

[16] V. Sarkar, “Optimized Unrolling of Nested Loops”, Interna-
tional Journal on Parallel Programing, 29(5):545–581, 2001.

[17] J. Lee et al., “Compiler approach for reducing soft errors in
register file”, IEEE LCTES, pp. 41-49, 2009.

[18] J. Yan et al., “Compiler guided register reliability improvement
against soft errors,” IEEE EMSOFT, pp. 203-209, 2005.

[19] D. Borodin et al., “Protected Redundancy Overhead Reduction
Using Instruction Vulnerability Factor,” IEEE CF, pp. 319-326,
2010.

[20] U. Schiffel et al., “Software-Implemented Hardware Error De-
tection: Costs and Gains,” IEEE DEPEND, pp. 51-57, 2010.

[21] C. Lee et al., “Compiler optimization on instruction scheduling
for low power,” IEEE ISSS, pp. 55-60, 2000.

[22] K. Pattabiraman et al., “SymPLFIED: Symbolic program-level
fault injection and error detection framework”, DSN, pp. 472-
481, 2008.

[23] H. Ziade et al., “A Survey on Fault Injection Techniques”,
IAJIT, vol. 1, no. 2, pp. 171-186, 2004.

[24] R. Velazco et al., “Injecting Bit Flip Faults by Means of a pure-
ly Software Approach: a Case Studied”, IEEE DFT, pp. 108-
116, 2002.

[25] M. Rebaudengo, M. S. Reorda, M. Violante, “Analysis of SEU
effects in a pipelined processor”, IEEE IOLTW, pp.112-116,
2002.

[26] Flux calculator: www.seutest.com/cgi-bin/FluxCalculator.cgi.
[27] J. Gaisler, “A portable and fault-tolerant microprocessor based

on the SPARC v8 architecture”, DSN, pp. 409-415, 2002.
[28] IBM® XIV® Storage System cache:

http://publib.boulder.ibm.com/infocenter/ibmxiv/r2/index.jsp.
[29] AMD PhenomTM II Processor Product Data Sheet 2010.
[30] X. Fu, W. Zhang, T. Li, J. Fortes, “Optimizing Issue Queue

Reliability to Soft Errors on Simultaneous Multithreaded Archi-
tectures”, International Conference on Parallel Processing, pp.
190-197, 2008.

[31] H.264 Codec: http://iphome.hhi.de/suehring/tml/index.htm
[32] L. Lin et al., “Soft error and energy consumption interactions: a

data cache perspective”, ISLPED, pp. 132-137, 2004.

246

