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Overview 
 
!   Technology Induced Dependability 

Problems 
!   Solutions at System-Level with 

focus on Software 
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In the Past … 

!  … Moore’s Law provided a win-win situation: 
!   Smaller feature size 
!   Higher integration density,  more functionality 
!   Lower power consumption 
!   Higher speed (performance) 
!   Less cost (per-transistor costs) 
!  … 

 

ITRS 

Gordon E. Moore 
(co-founded Intel in 1968) 
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In the Future … 

Quelle: Intel Corp., 2005 
q   … Problems 

q  Complexity: In 2017 100 Billion Transistors on chip 
q  Productivity gap 
q  Thermal problems 
q  Increasing relevance of aging effects 
q Manufacturing defects, process varation 
q  Stochastic effects since physical limits are reached 
q  Decreasing yield 

q   … Problems 
q  Complexity: In 2017 100 Billion Transistors on chip 
q  Productivity gap 
q  Thermal problems 
q  Increasing relevance of aging effects 
q Manufacturing defects, process varation 
q  Stochastic effects since physical limits are reached 
q  Decreasing yield 

Reliability 

ITRS 

Gordon E. Moore 
(co-founded Intel in 1968) 
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Technology Scaling 
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Variabilities 

! Variability of transistor structures  
!   Channel Length 
!   Isolators thickness (gate 

oxid) gate <-> transistor 
channel 

! Randomized Dopant 
Fluctiations (RDF)  -> 
Threshold voltage 

=> Decreasing mobility 
=> Increasing leakage 

!   Counter Measures 
! Strained Silicon Engineering 

! Strain channel to 
increase mobility  

!   „High-K“ materials for gate 
isolation (e.g. Hafnium) 
!   May increase aging 

!   ... 
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Aging Effects 
 
!   Elektromigration (EM) 

!   Stress Migration 

!   Time-dependent Dielectric 
     Breakdown 

!   … 
  

=> dependent upon operating 
    temperature ! 
 
 

Wire affected by electro migration  
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Increasing Susceptibility 
to Soft Errors 
! Ionizing rays may change charge 

concentration 
!   (like He2+) 
=> may lead to bit flips 

!   α-rays 
! Radioactive decompostion of 
      non-pure chip material  

 
 

! Cosmic rays (e.g. neutrons) 
!    accelerated through technolgy 
      advancements 

!   Low voltage and capacitances 
! Representation of bits through 

 smaller and smaller charges 
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Soft Errors through Radiation 
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!   radiation effects on semiconductor devicesàSoft Errors 
!   alpha particles 
!   low-energy neutrons 
!   high-energy neutrons/protons 

!   radiation event 
!   ion track formation 
!   ion drift 
!   ion diffusion 

!   Sensitive areas: 
!   Channel region of NMOS 
!   Drain region of PMOS 
!   “off” state is more sensitive 
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Heat Remains a Problem … 

Folgerung? 

“Circuit heat generation is the main limiting factor  
for scaling of device speed and switch circuit density” 
 
 

By Jeff Welser, Director SRC Nanoelectronics Research Initiative, IBM,  
Opening Keynote Address ICCAD 2007 

(Src: K. Skadron: Low-Power Design and Temperature Management;  
IEEE Micro, Vol. 27,  No. 6, 2007) 
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Thermal “Runaway” Problem 

!   Temperature and leakage: thermal “runaway” problem: 
!   Increase in temperature leads to increase in leakage power 

à feedback loop possible! 
!   Sub-threshold leakage  

approximated by 
 
 
 
 
 
where A and B are constants  
à exponential growth! 

B
T

subI A e
−

≈ ⋅

[Zhang 2003] 
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Temperature-Dependent Effects 

!   Process variations and electromigration can result in hillocks  
and holes 
!   Lead to open failures or short circuit  

failures respectively 
!   Failures may be temperature dependent 

due to material expansion 
!    Holes may function normally at high  

 temperatures but fail at low  
 temperatures 

!    Hillocks may function normally at low 
 temperatures but short circuit at high 
 temperatures 

[W.D. Nix, 1992] 

Hole/crack 

Hillock 
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Temperature in 3D 
!   3-D chips especially problematic 

3-D structures 

(Src: Y. Xie, PennState) 
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!   Problem: vertical heat flow 
!   Only one layer directly interfaces with the heat sink 
!   Heat needs to dissipate through multiple layers 

!   The heat sink is located on 
top of the chip 

!   Hot cores distant to the heat 
sink dissipate their heat 
through other layers 

!   Silicon has a low thermal 
conductivity!  
!   150 W/(m*K) (Silicon) 
!   401 W/(m*K) (Copper) 

Temperature in 3D 
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Temperature: Gradients matter … 
!  MTTF also affected by thermal gradients 

 
 
 
 
 
 
 

!   à Goal: balance temperatures 

Spatial gradients 
Simulated Thermal map Pentium M 

Temporal gradients 
[K. Skadron, 2005] 

[L.Finkelstein, Intel 2005] 
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Real Temperature Measurements 
Temp max: 89.2 °C 
Temp min: 60.2 °C 
Thermal variation:  29°C 
Spatial thermal gradient: ~1,93 °C/mm  

resources 
LUTs 2000 
FFs 2000 

DSPs 12 
Bram 0 
DCM 1 

Frequency 600 MHz 
Area 6% of chip 

Properties of  the tested region  
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Effect of Temperature … 
!   Hardware prototype : Xilinx Spartan3e FPGA with 4 Picoblaze 

tiles; thermal sensors realized through ring oscillators 
S
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Aging: TDDB 

!   TDDB: Time Dependent 
Dielectric Breakdown 
!   Created by: 

!   Accumulation of trapped charges 
at dielectric 

!   Effects: 
!   Increase of power consumption 
!   Slowing of switching speed 
!   Or: may destroy transistor 

(TDDB) 
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Aging: Electro-Migration 

Source: [Stott, 2010] 

(Electro-migration) 

!   Electro-migration: aging effect 
due to transport of mass in metal 
interconnects 

!   directly linked to temperature 
!   Basic Mean time to failure modeled  

by Black’s Equation: 

!   MTTF decreases exponentially  
with temperature 
 
 
à Goal: reduce peak temperatures 

[wikipedia] 
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Aging: NBTI 

!   Negative Bias Temperature 
Instability 
!   Breakdown of Si-H bonds at 

the silicon-oxide interface due 
to voltage/thermal stress 
à causes interface traps 

!   Affects mostly P-MOSFETs 
because of negative gate bias 
!   Effect in N-MOSFETS is 

negligible  

!   NBTI is not yet fully understood 
  

n 
p 

S oxide 
gate 

D 

Si Si Si 

H+ O H H 

P-type MOSFET 

Si Si 

O H trap 

Vg 

Vg < 0 à STRESS! Vg = 0 

p 
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!   NBTI manifests itself as a shift in Vth 
!   Causes increase in transistor delay 
!   Delay faults are responsible for 

NBTI induced bit-flips and resulting 
circuit failure 

!   Recovery effect in periods of no 
stress 
! When voltage and temperature are 

low, Vth can shift back towards ist 
original value 

!   Full recovery from a stress period 
only possible in infinite time 
à In practice overall Vth shift 
increases monotonously over longer 
periods, e.g. months/years 

V
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Stress Recovery 
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g 
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Aging: NBTI 
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Std deviation in 65nm SRAM P-MOSFETS Std deviation at 32nm 

V
th
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] 

V
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ft 
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] 

Time [years] Time [years] 

SRAM Vth shift 
Std. deviation 

SRAM Vth shift 
Std. deviation 

!   Mean Vth shift mainly due to Temperature/Voltage 
!   Small technology nodes have less Vth shift due to lower voltages 

!   However: Standard deviation of Vth shift mainly due to structure size 
!   Small technology nodes and small P-MOSFETs (e.g. SRAM) show large  

deviations from the mean Vth shift à inceased reliability concern 

Src: IBM, KIT 

Aging: NBTI 
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Other Effects 

This was not a complete list … 

Goal: How can we address the negative effects caused by the 
inherent unreliability observed at transistor and physical level 
when migrating to new technology nodes? 
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So, what are the solutions … ? 
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Solutions: Device Level 
FinFET-Transistor 

Idea: reduce channel thickness 
But: reduced mobility 

CNFET-Transistor 

Idea: combine high mobility and 
thin channel width 
But: problems in placement and 
structural growth 

Spin-Transistor 

Single-Electron Transistor 

NanoPLA block 
and 3D Interconnect 

Source: DeHon 
Injection of spin-polarized electrons at 
source V-gate affects spin trace electron 
current only when electron spin parallen 
to drain-spin 

         Idea:low power dissipation 
         But: hard to control => high error rates 

Graphene-Transistor 
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Solutions: System Level 

Devices, Technology, Physics, … 

Logic 

Architecture 

HW/SW System 

Physical 
sources

Faults

Error

Failure

Bit-Flip
Single/multi

Temporal and
Spatial correlated

Radiation Process variation
Temperature Coupling (C)

Jitter
Signal /

Vdd noise

Crosstalk

Wrong CPU 
reg. value

Wrong branch 
decision

Crash Data 
corruption

“No effect”

Permanent/
transient

Electro-
migration

Fault Model 
is needed! 
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Dependable Embedded Software 

!   Hardware-dependent software 
!   Operating system and 

middleware 
!   Management of 

observation 
strategies 

!   Performing online 
tests 

!    Perform adaptation 
!   Scheduling and allocations 

schemes 
!   Application software: 

!    instruction-level 
!    task-level 
!    algorithm level 

Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

!   Hardware Architectures: various levels 
!   Register-Transfer 
!   Micro-Architecture 
!   System-on-Chip 

!   Technology Abstractions provides 
physical properties 

!   Distinguish between: 
!   Permanent and transient 

problems 
!   Fabrication time and run-time 

(detect and fix) 
!   Possible means: 

!   Masking of undependable 
components 

!   Reconfiguration 
!    static 
!    dynamic 

Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

Technology Abstraction 

!   This SPP does not deal with 
technology! 

!   Means and architectures should be as 
technology independent as possible 

!   Technology abstraction should: 
!   Characterize technology 
!   Provide technology parameters 
!   Model undependability  
!   … 

Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

Technology Abstraction 

Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

Technology Abstraction 
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Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

Technology Abstraction 
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Solutions: System Level 
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Dependable Embedded Software 

Dependable Hardware Architectures 

Technology Abstraction 
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Solutions: System Level 
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Cost per Transistor 

Goal 
C

os
t 

Reliability Cost 

Product Cost 

time 

Error  
Resiliency  

Scaling NOT profitable Scaling profitable 
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Can we address these 
problems at Software Level ? 

(Src: paragoninnovations) 
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… leads to the questions: How 
does an Error articulate ? 

src: Sani Nassif, talk @ SPP 1500 Colloquium in Stuttgart 2011 
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src: Sani Nassif, talk @ SPP 1500 Colloquium in Stuttgart 2011 

How does an Error articulate ? 
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Improving Reliability at Software Level 

Software Techniques 
!   Redundant instructions, Comparison & 

Control flow checking instructions, EDDI 
[Oh’02], SWIFT & CRAFT [Reis’05]  
à >200% performance overhead 
à large memory overhead 
 

!   Compiler-Level techniques: register-file 
reliability [Hu’06], partially-protected 
register allocation [J. Yan’05], instruction 
scheduling [G.Memik’05][X. Fu’08]   
à Often insufficient reliability estimation 
and improvement : 2%-9% 
 à do not consider the vulnerability of 
overall processor resources used by 
different instructions 

Compiler-directed techniques may help 
increase reliability 
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Not all Soft Errors are of same 
Criticality 

!   Soft Error propagation into the Software Layer 
!   Different impact dependent upon affected component 

Instruction
Cache/
Memory
(IM)

Data
Cache/
Memory
(DM)Instruction

Execution
Unit	
  (IEU)

+
PipelineRe
gi
st
er
	
  F
ile

0x180: ld   [fp+(0xfdc)], g1 
0x184: and   g1, (0xff), g3 
0x188: sethi  0x3e, g1 
0x18c: or   g1, (0x334), g2 
0x190: sll   g3, (0x2), g1 

0x194: add   g1, g2, g1 
0x198: ld   [g1+(0xc00)], g1 
0x19c: xor   g4, g1, g1 
0x1a0: xor   i5, g1, g1 

Strike on Register File 
!   corrupted operand 
!   wrong output value 
→ Tolerable? 

Strike on Instruction 
Decoder 
!   corrupted opcode 
!   crash 
→ Not Tolerable? 

Error Type at Software Layer depends on 
1)  Fault Location 
2)  Instruction Type using different components 

[Photo: Gaisler @ IEEE DSN’02] 
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Spatial and Temporal Vulnerability 
!   Spatial vulnerability: probability of a fault depending upon the area 

of specific processor resources used by the instructions 
!   Temporal vulnerability: probability of a fault depending upon the  vulnerable 

periods of an instruction in a certain pipeline stage 

Instruction
Cache/
Memory
(IM)

Data
Cache/
Memory
(DM)Instruction

Execution
Unit	
  (IEU)

+
PipelineRe

gi
st
er
	
  F
ile

[Photo: Gaisler @ IEEE DSN’02] 
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ic Vu lnerable c
ic

c
c Pr oc

Vu lnerablePeriod * BitsIVI
TotalBits

−

∈

=
∑

 
 

 

Reliability Model: Instruction Vulnerability Index 

ic c faultc Pr oc
i

cc Pr oc

IVI * A * P ( c )
IVI

A
∈

∈

=
∑

∑

iàInstruction 
ProcàProcessor components 
CàParticular processor 
component 
Acà Area of the component 
Pfault (C)à Probability of a fault 
observed at the output of 
component 'c' 
 
 
 

IVIicàIndividual vulnerability of 
instruction i at component C 
BitsVulnerable-c àVulnerable-
bits of  component 'c' out of 
TotalBitsc 
TotalBitsc à architecturally-
defined size 

!   Accumulated vulnerability of 
instruction during its complete 
execution in pipeline stages  

!   Individual vulnerability of the 
instruction 'i' at component 'c'  
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Issue	
  
Cycle
1 load	
  r1	
  ß	
  a
2 load	
  r2	
  ß	
  b
3

Schedule	
  1:
Performance-­‐Driven

load	
  r3	
  ß	
  c
4 load	
  r4	
  ß	
  d
5 r2	
  ß	
  r1	
  *	
  r2
6 r4	
  ß	
  r3	
  *	
  r4
7 NOP
8 store	
  r2	
  à	
  e
9 store	
  r4	
  à	
  f

load	
  r1	
  ß	
  a
load	
  r2	
  ß	
  b
NOP
r2	
  ß	
  r1	
  *	
  r2
NOP
NOP
store	
  r2	
  à	
  e
load	
  r1	
  ß	
  c
load	
  r2	
  ß	
  d
NOP
r2	
  ß	
  r1	
  *	
  r2
NOP
NOP
store	
  r2	
  à	
  f

10
11
12
13
14

Schedule	
  2:
Register	
  File

Reliability-­‐Driven

3

#Reg	
  =	
  4,	
  #Cycles=9
Vulnerable Periods=18

FVIReg=6.3%

4
3
2

3
3

3 2

3

3
2

3

#Reg	
  =	
  2,	
  #Cycles=14
Vulnerable Periods=16

FVIReg=3.6%

Arrows show
the Vulnerable

Periods

Analyzing Reliability Impact of 
Instruction Scheduling 
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load	
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  ß	
  a
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NOP
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4
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3

4

3 2

53
3

3

3 2

3

2

3

3

#Reg	
  =	
  3,	
  #Cycles=11
Vulnerable Periods=19

FVIReg=5.6%

#Reg	
  =	
  4,	
  #Cycles=11
Vulnerable Periods=16

FVIReg=4.5%

#Reg	
  =	
  3,	
  #Cycles=10
Vulnerable Periods=18

FVIReg=5.4%

Analyzing Reliability Impact of 
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Example: SAD 
Schedule 1 

108:  ldub  [o0+g0],g2  
10c:  ldub  [o1+g0],g1  
110:  sub  g1,g2,g3  
114:  subcc g2,g1,g2  
118:  bpos,a 0x120  
11c:  mov  g2,g3  
120:  add  g3,g4,g4  
124:  ldub  [o0+(0x1)],g2  
128:  ldub  [o1+(0x1)],g1  
12c:  sub  g1,g2,g3  
130:  subcc g2,g1,g2  
134:  bpos,a 0x13c  
138:  mov  g2,g3  
... 

128:  ld  [o3+g0],g2   
12c:  ld  [o4+g0],g3  
130:  and  g2,(0xff),i4  
134:  and  g2,o5,g1  
138:  sra  g1,(0x8),i3  
13c:  and  g2,o7,g1  
... 
14c:  and  g3,(0xff),g4  
150:  and  g3,o5,g1  
154:  sra  g1,(0x8),i5  
... 
164:  subcc  i4,g4,g2  
168:  bpos  0x174  
... 
170:  sub  g4,i4,g2  
174:  subcc  i3,i5,g4  
178:  bneg,a 0x180  
17c:  sub  i5,i3,g4  
... 

Schedule 2 

i4 

i3 

g4 

i5 

Registers used:  
27 

Vulnerable period: 
45,642 

Registers used:  
17 

Vulnerable period: 
31,923 

g2 
g1 

g2 
g1 

Bars denote register 
vulnerable periods 

Bars denote  register 
vulnerable periods 
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SAD: Analysis 

Schedule 1 Schedule 2 
Performance [cycles] 2124 2241 ì

Registers used [number] 27 17 î

Vulnerable period [cycles] 45,642 31,923 î

IVIREG 0.0817 0.0542 î 
IVICC 0.1205 0.4569 ì

IVIALU 0.7505 0.4212 î 
IVIALL 0.1584 0.1367 î 
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Compiler Infrastructure for Reliabe 
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Software Level 

!  ... other approaches ... 



49 

spp1500.itec.kit.edu Jörg Henkel, Keynote Talk, SIES‘12, Karlsruhe, June 20th. 2012 

Application and OS Level 

�  An error is signaled, 
©  Error detection executed in a short amount of time, 

classification decides if, when and how to handle the error, 
�  Normal system execution continues, 
➂  If required, error correction takes place after timing-critical tasks have 

finished but before error has fatal consequences. 

➁ ➀ 

© 

➂ 

(Source: Marwedel/Engel) 
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Application analysis provides 
information on error propagation 

!   Values assigned to reliable 
variables must also be 
reliable 

!   Unreliable variables can 
tolerate errors  

!   Constraints: 

!   Pointers/array indices 
must be reliable 

!   Loop Conditions must be 
reliable 

!   Reliability of 
if-conditions depends on 
statements inside body (Source: Marwedel/Engel) 
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Conclusion 
!   Each new technology nodes introduces new dependability 

problems or makes existing ones worse 
!   Natural way to fix the problem: technology and device level 
!   However: there are opportunities at HW architecture and 

Software … 
!   Software Level: 

!   Software can’t erase the problem of unreliable hardware 
!   BUT: it can contribute and relieve the problem 
!   Reliability increase basically comes for free (probably some 

performance overhead 

!   Conclusion: Technology-induced reliability problems should 
be addressed at ALL Abstraction Levels! 
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Thank you for 
           Attention! 
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ABSTRACT 
A compilation technique for reliability-aware software transfor-
mations is presented. An instruction-level reliability estimation 
technique quantifies the effects of hardware-level faults at the 
instruction-level while considering spatial and temporal vulnera-
bilities. It bridges the gap between hardware – where faults occur 
according to our fault model – and software (the abstraction level 
where we aim to increase reliability). For a given tolerable per-
formance overhead, an optimization algorithm compiles an appli-
cation software with respect to a tradeoff between performance 
and reliability. Compared to performance-optimized compilation, 
our method incurs 60%-80% lower application failures, averaged 
over various fault injection scenarios and fault rates. 

Categories and Subject Descriptors 
D.3.4 [Processors]: Code Generation, Compilers; B.8 [Perfor-
mance and Reliability]: Reliability, Testing, and Fault-Tolerance 

General Terms: Algorithms, Design, Reliability, Perfor-
mance 

Keywords: Reliability, dependability, reliability estimation, 
instruction vulnerability estimation, reliable software, code gener-
ation, embedded systems, technology scaling, reliability-aware 
software transformations 

1. INTRODUCTION AND RELATED 
WORK 
Shrinking feature sizes as a result of technology scaling have led to 
an increased hardware susceptibility to soft errors (transient faults 
due to voltage scaling or high energy particles from cosmic rays or 
packing materials strike on the underlying transistors) [1][2]. Soft 
errors may cause spurious bit flips in the underlying hardware that 
may then propagate through the software layer and finally jeopard-
ize software correctness. Extensive reliability-increasing research 
has been conducted at hardware-level [3][4][5]. Hardware-level 
soft-error mitigation methods typically incur significant area, per-
formance, and power overhead. Software-level reliability techniques 
[6]-[13] have evolved to provide further improved system reliability 
and may be used in addition to hardware techniques. 

State-of-the-art approaches on instruction scheduling aim at im-
proving the reliability of register file (by reducing the vulnerable 
intervals of different register values) or instruction queue (by reduc-
ing the residency cycles of vulnerable bits in the instruction queue 
of super-scalar processors) [17][18][30]. State-of-the-art techniques 
based on instruction redundancy (EDDI [11], SWIFT [10], CRAFT 
[14]) provide software reliability by embedding redundant instruc-
tions, comparison instructions, and control flow checking instruc-
tions. As a result, these techniques incur a significant performance 
overhead. In order to provide enhanced control flow protection, 

CRAFT [14] and IVF-based [19] techniques duplicate the critical 
instructions, i.e. instructions that have a relatively high probability 
to lead to a software failure/crash in case of a soft error, for instance 
load, store, jump, branches, calls, etc. Therefore, these techniques 
incur additional >40% performance loss, increased register pressure 
(i.e. more register usage), and excessive memory overhead (because 
of instruction and data redundancy) [14]. Furthermore, an increased 
number of critical instruction executions may lead to excessive 
rollbacks during recovery because of an increased probability of 
software failures and fault propagation to/from memory, when a 
fault occurs in the hardware of the memory pipeline stage 
[10][14][20]. 

Besides excessive performance overhead, one of the primary 
issues of instruction redundancy and scheduling techniques 
([10][11][14], [17][18][30]) is that they treat all instructions in the 
same way. Their software-level reliability estimation models 
(RVF: Register Vulnerability Factor1 [18] or PVF: Program Vul-
nerability Factor2 [8][9]) do not distinguish between different 
types of errors in the software caused by the hardware-level faults 
during the execution of different instructions that use diverse 
processor components in different pipeline stages (see discussion 
in Section 2.1 and 5.1). Moreover, RVF [18] and PVF [8][9] are 
computed without considering the processor architecture. As a 
result, software-level reliability techniques of this kind are not 
very efficient. Furthermore, state-of-the-art instruction redundan-
cy and scheduling techniques do not consider other compiler stag-
es (like front-/middle-end optimizations) and their impact on the 
software (data types and structures, etc.) for improving its reliabil-
ity with reduced performance overhead. 

A reduced performance overhead or, alternatively, improved 
reliability may be achieved by employing reliability-aware soft-
ware transformations (before the instruction-redundancy and 
scheduling), which reduce the number of critical instruction ex-
ecutions and modify the instruction profile to increase the soft-
ware reliability. To employ such reliability-aware transforma-
tions, the gap between the hardware and software needs to be 
bridged by quantifying the effect of hardware-level faults at the 
instruction level for software-level reliability estimation, while 
considering the knowledge of the processor architecture and 
layout. Moreover, it is important to understand which instructions 
lead to which type of error in the application software. The type 
of error is dependent upon the processor component in which the 
fault occurs. 

1.1 Problem Statement 
Traditionally, software transformations have been studied from the 
perspective of performance or energy optimization [15][21]. The 
goal of this work is to increase the reliability of fault-susceptible 
hardware/software systems by means of reliability-aware software 

                                                                 
1 RVF considers the register live period as a measure for the reliability. 
2 PVF relates the software reliability to the bits for Architecturally Correct 

Execution (ACE) in different programmer-visible architectural components 
(Register File, ALU, etc.), but hides the physical components (e.g., there 
are 256 physical registers, but 32 are visible to the programmer). 

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan. 
Copyright 2011 ACM 978-1-4503-0715-4/11/10...$10.00. 
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transformations and reliability-guided compiler techniques, which 
consider the spatial vulnerability (different processor components 
occupy different chip area) and temporal vulnerability (different 
instructions have different execution latencies, instruction depen-
dencies, and vulnerable intervals of the operand values). 

In order to perform reliability-aware transformations at source-
code level, an instruction-level reliability estimation technique is 
required that quantifies the effect of hardware-level faults at the 
instruction level to effectively bridge the gap between hardware 
and software, i.e. the software level techniques consider the 
knowledge of the underlying hardware and how these faults are 
manifested and propagate through the software layer. 

1.2 Our Novel Contributions and Basic Idea 
1) We propose an Instruction Vulnerability Index (IVI) for 
software-level reliability estimation. It jointly considers the effect 
of faults in different processor components (spatial) during the 
execution of different instructions (temporal), types of errors, 
critical instructions, and ACE analysis (i.e. the bits for Architectu-
rally Correct Execution). Based on IVI, the Function Vulnerabili-
ty Index (FVI) and Application Vulnerability Index (AVI) are 
computed for a given function and application software, respec-
tively (see Section 2). 

2) Exploiting the knowledge of IVI and FVI, the following two 
reliability-aware software transformations are proposed that 
transform the code of a given function to aim for higher reliability. 

 FVI-Guided Data Type Optimization employs different data 
types for a given data structure, and affects the amount of data 
to be loaded from and/or stored into the memory along with in-
structions using this data (see Section 3.1). 
 FVI-Guided Loop Unrolling determines an 'appropriate' 
unrolling factor with minimum FVI (see Section 3.2). 

3) Application Composition and Reliable Code Generation: For 
a user-provided tolerable performance overhead constraint, an ap-
plication composition algorithm selects and combines various trans-
formation functions for reliable code generation (see Section 4). 

Fig. 1 shows our novel contributions (dark orange boxes) in a 
reliability-aware compiler. 

 
Fig. 1 Reliability-aware compiler flow and 

our novel contribution (in dark orange filled boxes) 

This is the first reliability-aware compiler that employs instruc-
tion-level vulnerability quantification (considering spatial and 
temporal vulnerabilities) and performs reliability-guided software 
transformations to generate more reliable software code under 
given set of constraints. 

The approach is orthogonal to hardware-level techniques, i.e. 
traditional hardware techniques may be applied in conjunction 
with our approach. We believe that each abstraction layer of a 
system should be involved and contribute its particular advantag-
es to design highly-reliable hardware/software systems. 

2. FAULT MODEL AND SOFTWARE-
LEVEL RELIABILITY ESTIMATION 
We consider single bit-flip transient faults at a given fault rate. It is 
assumed that faults are evenly distributed/hit throughout the proces-
sor area. Accordingly, faults are injected in various processor com-
ponents (in different pipeline stages) according to the components’ 
area during the execution of different instructions. Their effect on 
the software level is studied as distinct types of manifested errors 
(Fig. 2). Since ECC- and parity-protected caches is a well-
established practice in various research and industrial projects (IBM 
[28], AMD [29], [27]), in this work, we consider ECC-protected 
instruction and data memories. However, the register file is not ECC 
protected because of high area and power overhead under frequent 
usage scenarios [10][11][14][18][19], thus vulnerable to transient 
faults. Note, our proposed model and solution are applicable to both 
protected and unprotected register files. 

As discussed earlier, the motivation of this work is the observa-
tion that faults lead to distinct errors (see Fig. 2) during the execu-
tion of different instructions and different times and different con-
texts of execution. Now, we present an analysis to corroborate this 
motivation and to devise a software-level reliability estimation me-
tric “Instruction Vulnerability Index (IVI)” to quantify the vulnera-
bility of different instructions. 

 
Fig. 2 Different types of manifested errors 

2.1 Analyzing the effect of faults during the 
execution 
Fig. 3 illustrates the distribution of different errors for Motion-
Compensated Interpolation Filter ('MC-FIR') and Discrete Cosine 
Transform ('DCT') on an embedded processor subjected to a fault 
rate of 50 faults/10MCycles (see discussion on fault rates and 
experimental setup in Section 5). The key observations are as 
follows: 

a). Failures during the instruction-fetch (i.e. wrong access to in-
struction memory (IM)) and instruction-decode stages (i.e. non-
decodable instructions) occur with the same probability for all 
instructions, as all instructions use instruction fetch unit and instruc-
tion decoder. For instance, if a bit flips in the opcode field of an 
instruction word, this may lead to a non-decodable instruction. 

b). An application/software failure ('abort', 'exception', etc.) may 
occur due to a wrong branch/call, load/store from/to a wrong loca-
tion of data memory (DM), or wrong access to the IM, as a result 
of bit flips in the operands containing the address. This type of 
failures is typically not tolerable. In contrast, bit flips in the ope-
rands of arithmetic instructions (except address generation) may 
lead to an incorrect output error that might be in a user-tolerable 
range (e.g., faulty pixel distribution in videos) or bare no impact 
due to control flow. 

 Since the probability of failures in the instruction-fetch and 
instruction-decode stages is the same for all instructions, the 
key difference of processor components’ usage occur in other 
pipeline stages, like execute, memory, and write-back stages. 
Therefore, considering the severity of an error as a result of 
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faults in the pipeline stages (other than instruction-fetch and in-
struction-decode), we categorize load, store, jumps, branches, 
calls, and address generation instructions as critical instruc-
tions, while all other (mainly arithmetic and logical) instruc-
tions are denoted as non-critical instructions. For a given fault 
rate, the probability of failures is directly proportional to the 
number of critical instruction executions. 

c). Fig. 3 shows that in case of 'DCT', the failures for wrong store 
to DM are dominant compared to that in 'MC-FIR', due to more 
store instruction executions. The failures for wrong load from the 
DM happen primarily due to: (i) the bit flips in the operand con-
taining the address (during the memory pipeline stage), or (ii) the 
bit flips in the Address Generation Unit (AGU) during the address 
computation (in the execute pipeline stage). 

 Different processor components (instruction decoder, ALU, 
multiplier, AGU, memory controller, etc.) in different pipeline 
stages exhibit distinct area. Considering that faults are evenly 
distributed/hit over the surface area, the probability of fault in a 
processor component is directly proportional to its area. This is 
denoted as spatial vulnerability, which is the probability of a 
fault during the execution of an instruction w.r.t. to the area of 
various processor components it uses. 

 As discussed above, error types vary depending upon the in-
struction type and the pipeline stage in which they occur. There-
fore, in order to quantify the reliability at the instruction level, 
spatial vulnerability of different instructions needs to be consi-
dered. 
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Fig. 3 Analyzing the distribution of different error types 

d).  incorrect output errors are mostly due to bit flips (in ALU, 
multiplier, etc.) occurring during the execution of arithmetic and 
logical instructions in the execute pipeline stage. Even in this 
case, the probability of an error in a multiplier is higher compared 
to an ALU due to its increased spatial vulnerability. 

e). Different instructions spend varying amount of time (in terms 
of cycles) in different pipeline stages. For instance, multiply re-
quires 3 cycles, while an add instruction requires 1 cycle (using 
adder in the execute stage). This is denoted as temporal vulnera-
bility, which is the probability of a fault during the execution of 
an instruction w.r.t. to the time it spends in various processor 
components. Furthermore, this longer execution time of instruc-
tions results in longer intervals between the variable usages 
(stored in the register file), which results in an increased temporal 
vulnerability of the register file. Usage of more variables results 
in an increased spatial vulnerability. 

f). It is important to consider that not all bits of operand variables 
are vulnerable for the correct software execution due to inter-
layer masking from microarchitecture-state to the ISA-visible 
state [8][9] (i.e. a fault in the hardware does not lead to an errone-
ous application/software output or user-visible error, e.g., due to 
control flow or due to subsequent instructions). A bit of the cor-
rect software execution is deemed necessary for Architecturally 
Correct Execution (ACE-bit). All other bits are unACE-bits. To 
demonstrate, let us consider the following example. 

R0 = R1 & R2; R1 = 32'bit x;  R2 = 0x0000FFFF; 

A fault may occur in R1 or R2, but not in both. There, a fault in the 
upper 16 bits of R1 will not affect the value of R0. However, a fault 
in R2 will affect the value of R0. Therefore, bits 0-15 of R1 are 
ACE-bits, while bits 16-31 of R1 are unACE-bits. In contrast to this, 
all 32 bits of R2 are ACE-bits. Therefore, ACE analysis is important 
for devising the Instruction Vulnerability Index (IVI). 

Summarizing, in order to precisely quantify the hardware-level 
faults at the software level, the Instruction Vulnerability Index 
(IVI) needs to jointly consider the spatial and temporal vulnerabil-
ity, critical and non-critical instructions, and the ACE analysis. 

2.2 Instruction Vulnerability Index 
We define the Instruction Vulnerability Index (IVI) of an instruction 
'i' as its accumulated vulnerability during its execution in pipeline 
stages using diverse processor components (Proc) while considering 
their respective area (in terms of vulnerable gates); see Eq. 1. 

ic c faultc Pr oc
i

cc Pr oc

IVI * A * P ( c )
IVI

A




 


 (1) 

where 'c' is a particular processor component and Ac is its area in 
gate equivalents (obtained after synthesis and place & route re-
sults). Pfault(c) is the probability of a fault observed at the output 
of the component 'c'. It is employed to incorporate the logical 
masking effects, i.e. a transient fault in a combinational circuit is 
not latched by a memory element, as the fault is blocked from 
affecting the output due to a subsequent gate whose output is only 
determined by its other inputs [1]. Pfault(register file) is 100%, 
while in case of a combinational circuit it depends upon its micro-
architecture [1]. IVIic is the individual vulnerability of the instruc-
tion 'i' at component 'c' and it is defined as the product of BitsACE-c 
(ACE-bits of a component 'c' of an architecturally-defined size 
TotalBitsc in bits) and their vulnerable period (Eq. 2). 

ic ACE c
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c
c Pr oc

Vu ln erablePeriod * Bits
IVI
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


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 (2) 

In case of the register file, IVIic depends upon the number of ope-
rands, and Eq. 2 can be modified accordingly (Eq. 3) to obtain IVIiReg. 

op ACE opop operands
iReg

cc Pr oc

Vu lnerablePeriod * Bits
IVI

TotalBits









 (3) 

Fig. 4 demonstrates a case, where two operands have different 
vulnerable periods, i.e. lifetime of the operand variables in terms 
of cycles. For an instruction, the vulnerable periods of its ope-
rands depend upon the latency of previously executed instructions 
and instruction dependencies. For example, for the 5th instruction 
at cycle#9, the vulnerable periods for R0 and R2 are 4 and 6 
cycles, respectively. 

Cycle #  Instr. # 

3      load R2

1      load R1

5      R0 = R1 + R2

6      R3 = R0 * R1

9      R4 = R0 – R2

2

1

3

4

5

R1 

R2

R0

VulnerablePeriod = (Cycle of Current Usage – Last Write Cycle)
for i= 5; VulnerablePeriodR0 = 4 Cycles; VulnerablePeriodR2 = 6 Cycles

Vulnerable Period
(operand lifetime)

 
Fig. 4 Vulnerable periods of operands 

The vulnerable period denotes the temporal vulnerability and 
BitsACE-c and Ar denote the spatial vulnerability. BitsACE-c are ob-
tained by performing comprehensive software-level ACE analy-
sis. ACE analysis captures the vulnerable portion of architectural 
components (without considering fault injection and the underly-
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ing microarchitecture) by exploiting the read/write dependencies 
w.r.t. the register file and instruction dependencies. The bits writ-
ten in a certain cycle but not read are denoted as UnACE-bits. 

Our ACE analysis is similar to the one employed by PVF 
[8][9]. However, PVF does not distinguish between different types 
of errors that appear as a result of faulty ACE-bits. Therefore, our 
IVI metric incorporates the ACE analysis in conjunction with the 
knowledge of critical/non-critical instructions and varying proba-
bilities of failures and incorrect output in order to quantify the 
vulnerability index of a function. 

2.3 Function and Application Vulnerability Index 
As discussed in Section 2.1, faults occurring during the execution 
of critical instructions typically lead to application failures, which 
are more severe compared to incorrect output (from the user pers-
pective). Therefore, the Function Vulnerability Index (FVI) is 
computed as the weighted average of FVI for critical Instructions 
(FVICI) and non-critical Instructions (FVInCI). 

Failures i Failuresi CI

IncorrOP i IncorrOP nCIi nCI

i IncorrOP CIi CI

FVI IVI * P ( FaultRate )
FVI IVI * P ( FaultRate )

IVI * P ( FaultRate )







 
 


(4) 

Failures IncorrOP

F

* FVI * FVI
FVI

I

 



 (5) 

∑IF is the number of instructions in a function 'F'. 'CI' and 'nCI' 
are the critical and non-critical instructions, respectively. PFai-

lures(), PIncorrOP-CI(), and PIncorrOP-nCI(), are the probabilities for fail-
ure, incorrect output due to critical instructions, incorrect output 
due to non-critical instructions, respectively, at a certain fault rate. 
These probabilities can be obtained by employing fault-injection 
techniques. Various fault injection techniques are available to 
inject the faults on different level such as RT-level, ISS-level [24] 
and software-level [22]. Fault injection analysis at RT-level 
([2][23][25]) requires significant development time and a long 
experimental duration (9.7 simulated instructions per second 
[25]). For a complete application (like a complete H.264 video 
encoder with several million instructions), it will require weeks. 
Alternatively, software-level techniques [22][24] also exist for 
fault injection analysis. However, these software-level techniques 
do not consider the knowledge of processor layout with architec-
ture-specific details (area of different components, number and bit-
sizes of physical registers, etc.) for fault distribution and analysis. 
For example, the SymPLFIED [22] approach enumerates transient 
faults in registers, memory, and computation block of hardware 
without considering the processor architecture and layout in their 
machine model, therefore, lacks accuracy and may lead to over- or 
under-estimation or may even not cover certain fault scenarios (see 
Section 5.5 for accuracy comparison). 

The reliability of a complete application software is quantified 
using the Application Vulnerability Index (AVI); see Eq. 6. 

 
 

 



 

 

f

f

numExec

fi Failures IncorrOP
f F i 0

numExec

fi
f F i 0

(T * ( * FVI * FVI ))
AVI

T
 (6) 

where numExecf is the number of iterations of the function ‘f’ and 
Tfi is the execution latency (in cycles) in its ith iteration. 

Our proposed reliability-aware software transformations reduce 
the FVI and AVI for a given application software by: 
 lowering the PFailures(), PIncorrOP-CI(), and PIncorrOP-nCI() probabili-

ties, achieved by reducing the number of critical instruction 
executions. 

 lowering the IVIic, achieved by modifying the instruction pro-
file that leads to a different usage pattern of the processor 
components by means of executing alternative instructions. 

3. RELIABILITY-AWARE SOFTWARE 
TRANSFORMATIONS 
The following two reliability-aware software (source-level) trans-
formations are proposed. 

1) FVI-Guided Data Type Optimization 
2) FVI-Guided Loop Unrolling 

3.1 FVI-Guided Data Type Optimization 
Data type optimization is a method to transform the data types 
with smaller bit widths (like 8-bit unsigned char) into the data 
types with larger bit widths (16-bit short or 32-bit unsigned int) 
for a given data structure in order to reduce the number of criti-
cal instruction executions, while minimizing the FVI. 

It affects the amount of data to be loaded from and/or stored 
to the memory. The input/output and the internal data structures 
become distinct with different data types that impact the instruc-
tions executed, thus resulting in a different instruction histogram 
compared to the original function3. 

short int ref[16];
short int cand[16];
…
r00=ref[0];
r01=ref[1];
r10=cand[0];
r11=cand[1];
…
d0=r00-r10;
d1=r01-r11;
…
…

1
2
3
4
5
6
7
8
9
10
11
12

int ref[4];
int cand[4];
…
r0=ref[0]; r1=cand[0];
r00=r0&0x0000FFFF;
r01=r0>>16;
r10=r1&0x0000FFFF;
r11=r1>>16;
…
d0=r00-r10;
d1=r01-r11;
…

1
2
3
4
5
6
7
8
9
10
11
12
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Logical instructions due to 
extraction and re‐merging code

 
Fig. 5 (a) Example code showing data type optimization trans-

formation, (b) Corresponding data flow graphs 

Fig. 5 shows an example with original and transformed codes along 
with their data flow graphs. The original code executes 2x more 
load/store instructions due to 16-bit data loading into one 32-bit 
variable (stored in the register file) at a time; see left-side graph in 
Fig. 5b. In contrast, in the transformed code, two 16-bit data values 
are loaded into a 32-bit variable in a packed format; right-side graph 
in Fig. 5b illustrates two loads from two different arrays. The re-
duced number of executions of load/store instructions results in a 
lower probability for failures, as discussed in Section 2. Moreover, 
when using instruction redundancy for fault detection to achieve 
higher reliability, the incurred performance penalty is lower after 
deploying the ‘data type optimization’ transformation. 

                                                                 
3 In case data types of the input and output parameters are changed, a 

modification in the function interface is required. 
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However, this transformation comes with certain side-effects, as 
shown by the additional extraction and merging code in Fig. 5b (hig-
hlighted by dashed boxes), which is required to unpack and repack the 
data values when using a 32-bit RISC processor. Since after unpacking 
the data, variables and instructions are still in 32-bit format, the over-
flow of signed values is avoided. Additional instructions for packing 
and unpacking of data incur a performance penalty in addition to a 
relatively higher IVI for ALU. Therefore, this overhead needs to be 
amortized by the IVI reduction due to reduced number of executions of 
load and store instructions. Load instructions may incur stalls due to 
cache misses. Therefore, a reduced number of load instruction execu-
tions may even amortize the performance overhead of additional extrac-
tion and merging code. Still the merging algorithm considers a tolerable 
performance overhead. Note, in case of VLIW architectures, this trans-
formation may even be better due to the availability of SIMD instruc-
tions. 

When using data types with even smaller bit-widths, like unsigned 
char (8-bit, typical in image and video processing applications), the 
critical instruction executions can be further reduced to lower the prob-
ability of failures. However, it might incur a significant performance 
overhead and code size expansion due to the excessive extraction and 
merging code for packing/unpacking of data. That is why we propose 
an algorithm that performs data type optimization for load/store instruc-
tions under the constraint of a given tolerable performance overhead 
(Pτ). 

1. Input: G (V, E), Pτ, FVIOrig, POrig, DataType 

2. Output: Transformed Function fd   // with reduced FVIfailuers 

3. BEGIN 

4. A  getAllArrays(G); 

5. For all a  Є A 
6.   list<V> L  getLoads(a, G); 

7.   If (DType= INT)Then  

8.     continue; 

9.   FVIBest  FVIOrig; 

10.   While L != Ø { 
11.     G'  G 
12.     (l1,l2)  GetCurrent&NextLoads(L) ; 

13.     l  Merge(l1,l2); 

14.     G' .Remove(l1,l2);  G' .Insert(l );  G' .InsertExtract ionCode( ); 
15.     (FVI, P, Spill)  Evaluate(G' ); // Compile and Execute, 

  and estimate FVI, performance, and check for spilling 

16.     If ((P/POrig – 1)> Pτ) Then   break; 

17.     If ((FVI < FVIBest) & (!Spill)) Then 

18.       FVIBest  FVI;  L .Remove(l1,l2); 

19.       G .Remove(l1,l2); G .Insert(l ); 
20.       G .InsertExtract ionCode( ); 
21.     End If 

22.   End While 

23. End For 
24. fd  G; 

25. return fd; 
26. END 

Fig. 6 Algorithm for FVI-guided data type optimization 

Fig. 6 presents the pseudo-code for data type optimizations target-
ing load merging (for store instructions, the procedure is similar). 
 Input: Graph G (V, E) of the function F, Pτ as the tolerable 
performance overhead, Data Type, FVI and performance of the 
original code (FVIOrig, POrig),  
 Output: Transformed function fd with merged loads and ex-
traction code as a result of the data type optimization 

First, all arrays A are extracted from the graph G (line 4). Then, 
for each array a Є A, a list L of all load vertices is obtained from 

the input graph (line 6). If the data type is integer (32-bit), no 
merging is performed for array a (line 7). Otherwise, the algo-
rithm iterates until all load vertices are evaluated (lines 10-22). 
First a temporary copy G' of the graph G is created (line 11). Then, 
two consecutive load vertices are extracted from the load list and 
merged (line 12, 13). These load vertices are removed from the 
temporary graph G' and the merged load vertex is inserted along 
with the extraction code (line 14). Afterwards, the temporary 
graph G'  is compiled and simulated to estimate the performance 
and reliability (FVI) in line 15. In case the performance loss is 
greater than the tolerable performance, the algorithm returns the 
currently best Graph (line 16, 24). Otherwise, the FVI is com-
pared to the currently best FVI (line 17). In case of a better solu-
tion, the vertices under evaluation are removed from the original 
graph G and the merged load vertex is inserted along with the 
extraction code (lines 18-20). 

This algorithm only merges two load vertices in each itera-
tion. Therefore, when optimizing from 8-bit to 32-bit data types, it 
is invoked two times. 

3.2 FVI-Guided Loop Unrolling 
Loop unrolling is a method to expand/unroll source code loops by 
determining an appropriate unrolling factor (among several un-
rolling options) such that the Function Vulnerability Index (FVI) 
is minimized, while reducing the number of critical instruction 
executions. 

The unrolling factor is defined as the number of loop body 
replications after unrolling. Loop unrolling techniques have been 
extensively explored for improving the performance and power 
consumption while considering side effects like increased soft-
ware code size, instruction cache overflow, register spilling, etc. 
[15][16]. However, loop unrolling has not yet been well explored 
from the reliability perspective. 

On one hand loop unrolling has an impact on the reduced number 
of critical instruction executions such as load/store and branches. 
On the other hand it may result in an increased FVI due to, 
a) increased variable lifetime via engaging the same register for 

storing this variable for a longer time. The variables of the un-
rolled code are typically kept for a relatively longer time in-
side the registers until the relevant instructions are executed. 
Therefore, it increases the temporal vulnerability of variables 
stored in the register file. This effect can be seen in the exam-
ple of Fig. 7 where the vulnerable period of variable y[2] has 
been significantly increased. In contrast, the original code rel-
oads y[2], thus reducing the vulnerable period. 

b) increased spatial vulnerability as more registers are required 
for storing live variables; Fig. 7 shows that more y[i] data val-
ues are alive, thus requiring more registers. 

x[1]= y[0]+y[1]+y[2];
…
…
y[1]= y[1]…
x[2]= y[1]+y[2]+y[3];
…
…
y[2]= y[2]…
…
}

for(i=1;i<20;i++)
{
x[i]= y[i-1]+y[i]+y[i+1];
…
…
y[i]= y[i]+…

}

Original Code Transformed Code

Variable y[2]  
has longer 
vulnerable 
period, i.e., 

longer 
lifetime

 
Fig. 7 Example code shows the increased temporal 

vulnerability of variables as a consequence of loop unrolling 
 

The challenge in this case is to determine an appropriate unrol-
ling factor which is guided by the Function Vulnerability Index 
(FVI) to jointly optimize for reliability and performance, while 
considering the relative increase in the code size. 
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We cope with these reliability-related concerns of loop unrol-
ling by means of our FVI-guided Loop Unroller that determines – 
for each given loop l of a function F – an appropriate unrolling 
factor by minimizing the: 

a) Function Vulnerability Index (FVI), considering utilization of 
different processor components by different instructions, and 

b) Performance loss compared to the maximum achievable per-
formance when using a performance-based unrolling,  

while avoiding the spilling and incurring a relatively small in-
crease in code size (i.e. number of assembler instructions). Our 
FVI-guided Loop Unroller discards the unrolling factors that 
cause register spilling4 (as a consequence of excessive loop unrol-
ling), as it may incur additional critical instructions such as store 
and then load (thus, an increased probability for failures, as dis-
cussed in Section 2) due to the spill code. The goal is to maximize 
the following profit function (Eq. 7). 

Orig Orig

Orig

( FVI / FVI )  ( P / P )
Profit

( C / C )




 



 (7) 

(FVIOrig, POrig, COrig) and (FVI, P, and C) denote the FVI, perfor-
mance, and code size (number of assembler instructions) of the 
original code (i.e. performance-optimized) and the transformed 
code, respectively. The parameter µ activates or deactivates the 
normalization effect due to code expansion. In case the instruction 
cache is protected by ECC or parity ([2][18][27]), µ is set to be 
COrig/C, otherwise, it is set to be one (i.e. the case of unprotected 
instruction cache). The optional parameter γ scales up the impor-
tance of reliability. 

3.2.1 Algorithm of our FVI-Guided Loop Unroller 
The proposed FVI-guided Loop Unroller (Fig. 8) requires the loop 
iteration counts. This is known for fixed-sized and input-invariant 
loops and unknown for variable-sized loops where the loop itera-
tions depend on a variable’s value that may change at run time de-
pending upon the input data5. For each loop of a given function, the 
maximum unrolling factor (maxUnrollFactor) is then determined as 
the Greatest Common Divisor of all the corresponding loop itera-
tions due to profiling for varying input data. 

A set of maxUnrollFactors for all loops of a function F is then 
forwarded as an input to our FVI-guided Loop Unroller. Further 
input parameters are the FVI, performance, and code size of the 
original function F (FVIOrig, POrig, and COrig), i.e. with performance-
optimized compilation (line 1). Similar to various state-of-the-art 
loop unrolling approaches (like [15]), this information is computed 
at the assembly level and made accessible at the source code level 
through back-annotation. The output is the transformed function fd 
with loop unrolling applied by an FVI-minimizing unrolling factor. 

Fig. 8 shows the pseudo-code of the implemented FVI-guided 
Loop Unroller. First, all loops are extracted from F and stored in a 
list L (line 4). Afterwards, all loops of the function F are 
processed and an appropriate unrolling factor is determined (lines 
5-21). For each loop l, the corresponding maximum unrolling 
factor maxUF is extracted from the input set maxUnrollFactors 
(line 6). Then, for each loop l, the proposed algorithm computes 
the profit (Eq. 7, line 15)6 for all possible unrolling factors from 1 
to the corresponding maxUnrollFactors (line 8). A copy of the 

                                                                 
4 Note, in embedded processors, the number of physical registers is typi-

cally much less compared to high-end microprocessors. 
5 Identifying fixed loops and variable loops is out of the scope of this 

paper; see [15] for further details on such a static loop analysis. 
6 As discussed in Section 2, we consider protected cache and memory. 

loop l is created as ltemp, which is then evaluated for loop unrolling 
without affecting the original code (line 9). After unrolling the 
loop ltemp (line 10), the function is compiled and simulated to 
compute the FVI, performance P, code size C (line 11). For FVI 
estimation, our reliability-aware compiler has access to the archi-
tectural features (number and bit-width of registers, ALU, Instruc-
tion Word with operands and opcodes, etc.) and their usage pro-
files/lifetime from simulation (see Section 5.1 for the simulation 
details). Furthermore, the spilling condition is also checked. 

1. Input: Function F, Set of maxUnrollFactors, FVIOrig, POrig, COrig, γ, µ 
2. Output: Transformed Function fd         // with FVI‐guided loop unrolling 

3. BEGIN 

4. list<Loop> L  getLoops(F); 

5. For all l Є L{  // determine FVI‐guided unrolling factor for each loop 

6.   maxUF = getFactor(l, maxUnrollFactors); 

7.   unRollProfitBest  maxINT;  uFBest  1; 
8.   For uFi = 1 to maxUF{ 

9.     ltemp  l;  // create a temporary copy of the loop  

10.     FuFi  Unroll(F, ltemp, uFi);  // Unroll by factor uFi 

11.     (FVI, P, C, Spill)  Evaluate(FuFi); // Compile and Execute, and 

     estimate  FVI, performance, code size, and check for spilling 

12.     Benefit_FVI  FVI / FVIOrig;  // FVI Improvement 

13.     Loss_P  P / POrig;  // Performance Loss 

14.     Loss_C  C / COrig;  // Code Size Increase 

15.     unRollProfit = computeProf it(Benefit_FVI, Loss_P, Loss_C, γ, µ);
      // Eq. 7 

16.     If ((unRollProfit > unRollProfitBest) & (!Spill)) Then 

17.       unRollProfitBest  unRollProfit;  uFBest  uFi; 

18.     End If 

19.   End For 

20.   setBestUnrollFactor(l, uFBest); 

21. End For 

22. // generate the transformed funct ion using the best unroll factors 

23. For all l Є L{ 

24.   UFBest = getBestUnrollFactor(l ); 
25.   fd  unRoll (fd, l, UFBest); 

26. End For 
27. return fd; 
28. END 

Fig. 8 Algorithm for FVI-guided loop unrolling 

The FVI reduction, performance loss, and code expansion are com-
puted and forwarded as an input for the profit calculation (lines 12-
14). In case the profit of unrolling the loop l (unRollProfit) is more 
than the current best profit (unRollProfitBest) and in case there is no 
spilling, the current unrolling factor is set as the best unrolling factor 
(uFBest) and the best profit 
(unRollProfitBest) is updated accordingly. This ensures that – for a 
given loop l – only that unrolling factor will be selected that pro-
vides maximal FVI reduction while incurring relatively small per-
formance loss and code-size increase. As discussed earlier, our ap-
proach discards the spilling cases as the spill code increases the 
number of critical instruction executions which lead to a higher 
susceptibility of the application software towards failures. After all 
the unrolling factors (till maxUF) are evaluated, the FVI-guided best 
unrolling factor for the loop l is set and the next loop is evaluated. 

Once the FVI-guided best unrolling factors for all loops are de-
termined, the transformed function fd is generated by unrolling all 
of its loops by their calculated best unrolling factors (lines 22-26). In 
case of nested loops, the transformed function fd is processing itera-
tively to generate another transformed function fd2. 

Functions with different software transformations applied ex-
hibit different performance and reliability values (FVI, FVIFailure, 
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FVIIncorrOP; see Section 2) due to their distinct instruction profiles 
that use the underlying processor components in diverse ways 
These transformed functions are then forwarded to an application 
composition algorithm that selects and combines (links) various 
transformed functions. 

4. APPLICATION COMPOSITION AND 
RELIABLE CODE GENERATION 
In the following, we explain the algorithm for composing an 
application binary using the above-discussed transformations. 

Input: an application software is composed of n kernel functions, 
where each function undergoes different reliability-aware 
transformations (Section 3) to obtain a set of transformed functions 
Fi. 

A = {F1, F2, …, Fn},  Fi = {fd1, fd2, …, fdm} 
Each fdij transformed function represents a tuple with certain 
properties {nij, FVIij, {FVIk}ij, Pij}, where nij, FVIij, Pij are the 
numbers of assembly instructions, Function Vulnerability Index 
(FVI, see Section 2), and latency (cycles) of the fdij transformed 
function, respectively. {FVIk}ij is the set of separate FVIs for failures 
and incorrect output (i.e. FVIFailure, FVIIncorrOP) at a given fault rate. 

Output: C as a set of chosen transformed functions of an 
application software 

Constraint: user-given tolerable performance overhead (Pτ) and 
tolerable code expansion (Cτ); 

i i i 1fd fd fd Maxi C i C( P P ) / P 1 P      (8) 

i i i 1fd fd fd Origi C i C( C C ) / C 1 C      (9) 

PMax is the execution time of the application software with 
performance-optimized compilation, 

ifdi C P and 

ifdi C C are the total execution time and total code size (in 
number of assembly instructions) of all chosen transformed 
functions, respectively. The terms 

i i 1fd fdi C P  and 

i i 1fd fdi C C  denote the execution time and size of the 
sequential code between fdi and fdi+1, i.e. between two 
consecutive transformed functions. We only consider the kernel 
functions and not the concatenated calling functions. For each 
kernel function, only one transformed function (with a certain 
reliability-aware software transformation) is chosen in a valid 
solution. The goal of the algorithm is to determine a valid solution 
that meets the constraints of Eqs. 8 and 9, while minimizing the 
following optimization goal of Eq. 10. 

Optimization Goal: minimize the AVI (Eq. 6); see Eq. 10. 

fdi
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numExec

fdij i Failures i IncorrOP
i C j 0

numExec

fdij
i C j 0

(T *( * fd .FVI * fd .FVI ))
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 
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 

(10) 

Selection Algorithm: It is a compile-time selection problem that 
can be solved optimally using a branch and bound algorithm or 
sub-optimally using a heuristic. Since the search space in our case 
is small (e.g., less than 20 kernel functions for a complex H.264 
video encoder application), we employ a branch and bound 
algorithm to traverse the overall design space. 

5. EVALUATION AND RESULTS 
5.1 Experimental Setup 
Fig. 9 shows our reliability analysis and estimation, and simula-
tion framework based on an Instruction Set Simulator (ISS); see 
experimental setup in Table I. A fault rate (in #faults/10MCycles) 
is computed from the neutron flux (determined using the geo-

graphical location and altitude where the device will be used [26]) 
and fault probability, processor layout, and the processor frequen-
cy. We used 10, 50, and 100 faults/10MCycles, which conforms 
to the test conditions opted by prominent related work [12][32] 
and as such eases comparison. 

 
Fig. 9 ISS-based reliability analysis and estimation framework 

with integrated processor-aware fault injection 

A fault generator that generates different fault scenarios consider-
ing fault models, fault rates, and faults in different processor 
components (e.g., register file, PC, Instruction Word (IW), ALU, 
Multiplier, etc.) is employed. The number of injected faults per 
component is determined by the component area (in gate equiva-
lents, or percentage of total processor area, which is obtained after 
RTL synthesis and place & route results) in order to incorporate 
spatial vulnerability. For example, more faults are injected in a 
multiplier/divider compared to the ALU according to the areas 
these components occupy on the chip. 

Table I: Different parameters for fault generator 

Parameter Description Proper-
ties/Values 

Distribution Distribution models for fault generation random

Bit Flips Min/Max number of bits flipped 1/1, 1/2, …

Fault
Probability

Probability that strike becomes a fault [1] 10%-100%

Fault
Location

List of target processor components Register file, 
PC, IW, etc.

Processor
Layout/Area

Size of the complete target device in gate
equivalents 
or mm² [27]

Component 
Area

Area of different processor components 
given as percentage of processor area 

0%-100%

Place and
Altitude

City and altitude at which the device is 
used to determine the flux rate (NFlux) 

Oslo, 1- 20km

Frequency Operating frequency of the processor 50, 100 MHz

The faults in various processor components are modeled at the 
ISS level considering the spatial and temporal vulnerabilities. 
Fig. 10 demonstrates the spatial and temporal vulnerabilities of 
Add, Multiply, and Load instructions in different pipeline stages, 
using an abstract 5-stage integer unit pipeline of the Leon 2 pro-
cessor, where the used components are denoted as (light blue) 
filled boxes. It is noteworthy that Add and Multiply instructions 
are not vulnerable in the memory stage. In contrast, a load instruc-
tion is vulnerable in the memory stage, too. The vulnerability of 
load/store instructions in the execute stage is primarily due to the 
address calculation. Fig. 10 illustrates that the spatial vulnerability 
of the load instruction is higher compared to the add instruction 
due to the usage of more processor components. Furthermore, the 
probability of injecting a fault during the multiply instruction is 
higher compared to that in ALU due to the higher temporal vulne-
rability of a multiplier (due to longer execution). 

Considering this notion of spatial and temporal vulnerability, 
the faults and their impacts in different processor components are 
modeled at the ISS level (see detailed modeling procedure in 
Table II). For example, a fault in the instruction decoder or in the 
instruction word is modeled as corrupting one/multiple fields of 
the instruction word in the ISS that results in a wrong opcode or 
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wrong operand. Furthermore, a fault in the data bus or in the 
cache/memory controller has the same effect from the software 
perspective as it manifests as a wrongly loaded value. In the regis-
ter file, the fault is retained until it is overwritten. 

Following the modeling procedure, the fault injection engine then 
injects the faults during the execution of the application software. 
Note, if a fault is injected into the multiplier while an add instruc-
tion is being executed, it will have no effect on the application 
software output. A target processor component for fault injection 
is randomly selected. 
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Fig. 10 Spatial and temporal vulnerabilities: different instruc-
tions using diverse processor components (with distinct area, 

see layout of Leon 2 [27]) in pipeline stages 

In order to provide a fair comparison, the original code is used with 
all basic compiler optimizations. The tolerable performance over-
head (Pτ) and tolerable code expansion (Cτ) are given as 5%. For 
evaluation, we have benchmarked an entire H.264 video encoder 
[31] as it exhibits various compute-intensive functional blocks (e.g., 
'SAD', 'SATD', 'DCT', 'HT', 'MC-FIR', 'IPRED') with diverse com-
putational properties, thus providing a representative challenge. 

5.2 Discussion on Transformation Results 
Fig. 11 compares the error distribution of a performance-
optimized and our reliability optimized functions for three 
different fault rates. Significant improvements are observed for 
'DCT', 'HT', 'MC-FIR', 'IPRED', and 'SATD' because of 
considerable reductions in the number of critical instruction 
executions and vulnerable periods (>20x). This effect is also 
visible in Fig. 12 in terms of up to 92% (on average 64%) 
reduction in FVI. For 'SAD', the benefit of 50% reduced critical 
instruction executions is balanced by 9% increased arithmetic 
instructions, that lead to an increased number of failures due to 
'non-decodable' instructions as a result of an increased 
vulnerability of instructions in the instruction-decode stage. 
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Fig. 11 Comparing the error distribution of performance-

optimized and our reliability-optimized functions 

The detailed error distribution in Fig. 13 shows that the major 
reduction in application failures for 'SATD' comes from the reduced 
number of 'wrong load from DM' and 'wrong store to DM' failures. 
The 'Incorrect Output' cases are reduced due to reduced 
vulnerability of an ALU and reduction in the vulnerable periods. 

Fig. 11 shows that our transformations provide on average 
63.8%, 81.9%, and 67.8% reduced application failures for 10, 50, 

Processor Components Area (Leon 2) [27] Fault Symptom Modeling Procedure Fault Impact 
Instruction Fetch & Decode + 
Instruction Word (IW), 
(Sparcv8, 5-stage pipeline) 

Pipeline and 
Integer Unit 
(0.86 mm²) 

 
 

Floating Point 
Unit (0.86 mm²) 

one/multiple 
fields of an in-
struction word 
are corrupted 

opcode field(s) is corrupted wrong instruction is executed, instruction format 
is changed, instruction is not decodable 

source/destination register field(s) 
is corrupted 

data is fetched from/written to wrong register(s) 

immediate value is corrupted wrong input value for calculation 
Program Counter (PC), 
Next Program Counter (NPC) 

wrong 
instruction(s) are
executed 

PC is corrupted single instruction is fetched from the wrong loca-
tion/no access to the designated region 

NPC is corrupted multiple instructions are fetched from the wrong 
location/no access to the designated region 

Integer Execution Unit (IEU) 
and Floating Point Unit (FPU) 

result of the 
Execution units 
are corrupted 

sources (input values) of the Ex-
ecution Units are corrupted 

wrong result because of incorrect source register 
content/wrong computation 

destination (output value) of the 
Execution Units is corrupted 

wrong result because of incorrect destination 
register content/wrong computation 

Register File 
(windowed, 264x32 bit) 

0.19 mm² data in the 
register file is 
corrupted 

register in current window is 
corrupted 

wrong content is fetched if window does not 
move, corrupting source operands 

register not in current window is 
corrupted 

wrong content is fetched when window is moved, 
corrupting source operands 

Instruction Memory (IM) + 
Data Memory (DM), 16 Kbyte 

2.59 mm² data in the caches 
is corrupted 

corrupted data load instruction fetches incorrect content 
corrupted instruction same impact as fault in IW 

Others (peripheral units, …) 0.45 mm² not simulated 

Table II: Modeling faults in different processor components at the ISS-level; as an example for the case of Leon 2 
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100 faults/10MCycles, respectively. Furthermore, our 
transformations provide on average 43.7%, 16.2%, and -38.6% 
reduced (negative value denotes an increase) incorrect output for 10, 
50, 100 faults/10MCycles, respectively. Note, the percentage of 
incorrect output is increasing when using our transformations at 
higher fault rates. This is due to the fact that our transformations 
prioritize reducing the application failures that are not tolerable. To 
further increase the reliability, instruction redundancy techniques 
may be deployed. In the following, we will demonstrate the benefit 
of our transformations when employed in conjunction with state-of-
the-art instruction redundancy techniques, i.e. EDDI [11], SWIFT 
[10], CRAFT [14]. 
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Fig. 12 FVI reductions of our reliability-optimized functions 
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Fig. 13 Comparing the distribution of different error types for 
performance-optimized and our reliability-optimized SATD 

5.3 Applying our Transformations with 
Instruction-Redundancy Techniques 
State-of-the-art instruction-redundancy schemes protect critical 
instructions and control flow (like load, store, jump/branches, 
etc.) using several additional compare and branch instructions in 
the original code. Our proposed transformations aim at reducing 
the number of critical instruction executions, thus reducing the 
overhead of additional instructions for protection. 
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Fig. 14 Comparing instruction-redundancy techniques with and 

without our proposed software transformations 

Fig. 14 shows the performance of instruction redundancy tech-
niques with and without our transformations normalized to the 
performance-optimized code. It demonstrates that employing our 
transformations in conjunction with state-of-the-art instruction-

redundancy based techniques (EDDI [11], SWIFT [10], CRAFT 
[14]) provides up to 39.5% (average 21.8%) lower performance 
penalty compared to when not applying our transformations. One 
of the primary reasons for this reduced penalty is the reduction in 
branches and store instructions that are used as synchronization 
points for inserting the check instructions in SWIFT [10] and 
CRAFT [14]. In application softwares with extensive load/store 
instructions (like DCT, IPRED, SATD, and MC-FIR), instruction 
redundancy techniques with our transformations incur significant-
ly reduced performance overhead compared to instruction redun-
dancy without our transformations. Note, this paper does not in-
troduce any new instruction redundancy technique; rather we 
demonstrate how our transformations may help in reducing the 
performance penalty of existing instruction redundancy tech-
niques (like SWIFT [10], CRAFT [14]). 

5.4 Discussion on Loop Unrolling Factors 
Fig. 15 presents the detailed evaluation of our FVI-guided Loop 
Unroller showing different unrolling possibilities and the FVI-
aware selected unrolling factor for the 'SATD' function. Fig. 15 
shows that the IVI for register file in case of the unrolling factor 8 
(FDLU8) is increased by 45% (5.63%  8.20%) compared to IVI 
of the unrolling factor 4 (FDLU4), which is mainly due to the usage 
of 11 more registers (31 vs. 20). Due to the complete unrolling, 
there are no loop test (jump/branch) instructions in FDLU8. How-
ever, the sequence of consecutive arithmetic instructions results in 
an increased IVI for the ALU. Moreover, since almost all the 
instructions are arithmetic instructions, ALU is vulnerable all the 
time. 
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Fig. 15 Effect of loop unrolling on reliability and performance 

Although FDLU8 improves the performance from 427 cycles to 
231 compared to FDLU4, there is a significant increase in the IVI 
for the ALU and register file components (exhibit higher spatial 
vulnerability compared to the cache controller), which leads to a 
relatively lower reliability. Therefore, our FVI-guided Loop Un-
roller chooses 4 as reliability-wise better unrolling factor the 
'SATD' function, which provides 45% IVI reduction at the cost of 
1.8x performance loss. 

5.5 Evaluation of Simulation-/Compilation- 
Times and Reliability Estimation Accuracy 
The reliability analysis and estimation was performed using a 24-
core (2.4 GHz) Opteron processor 8431 with 64 GB memory. The 
average runtime of our reliability analysis and simulation is 
72x103 SIPS (simulated instructions per second) with extensive 
error logging (40MB/MCycles). The simulation runtime of a 
state-of-the-art software-level reliability analysis technique 
SymPLFIED [22] is 15.2 SIPS. It shows that our methodology 
provides significant simulation runtime improvement (>4K times) 
compared to SymPLFIED [22], which is mainly due to the exten-
sive model computation in SymPLFIED. 

245



Fig. 16 illustrates the comparison of our reliability estimation 
accuracy with SymPLFIED [22]. In case of SymPLFIED, the 
number of application software crashes due to wrong access to 
Instruction Memory increases significantly. This is due to an in-
creased number of faults in the PC. The main reason is the ignor-
ance of processor layout with several architecture-specific fea-
tures in SymPLFIED’s machine model. Therefore, the percentage 
fault in PC increases from 0.1% to 7.1%, which leads to an aver-
age 27% over-estimation of application failures (for 
100f/10MCycles). The comparison in Fig. 16 demonstrates that 
when using the SymPLFIED technique, the probabilities for fail-
ure and incorrect output are over-estimated, which lead to an in-
accurate FVI estimation (see Section 2). It thereby demonstrates 
the improved accuracy of our reliability analysis. 
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Fig. 16 Detailed error characterization in different 

applications using our methodology and SymPLFIED [22] 

Compared to the performance-optimized compilation, our metho-
dology for reliability-aware compilation suffers from a significant 
compilation-time overhead due to reliability analysis and estima-
tion (which is still >4K times faster compared to state-of-the-art) 
and iterative evaluations. It instigates the need to explore intelli-
gent reliability-aware Back-Annotation techniques. 

6. CONCLUSION 
A novel compilation technique for reliability-aware software 
transformations is proposed along with an instruction-level vulne-
rability estimation method. Compared to performance-optimized 
compilation, our new compilation technique incurs 60%-80% 
lower application failures, averaged over various fault injection 
scenarios and fault rates, while reducing an application’s vulnera-
bility by avg. 64% compared to performance-optimized compila-
tion. 

Our work demonstrates that software-level techniques can 
significantly contribute towards reliable hardware/software sys-
tems. We believe that both software and hardware abstraction 
layers of a system should be involved and contribute its particular 
advantages towards highly-reliable hardware/software systems. 
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